为什么要写 tf.Graph().as_default()


首先,去tensorflow官网API上查询 tf.Graph() 会看到如下图所示的内容:

总体含义是说:

tf.Graph() 表示实例化了一个类,一个用于 tensorflow 计算和表示用的数据流图,通俗来讲就是:在代码中添加的操作(画中的结点)和数据(画中的线条)都是画在纸上的“画”,而图就是呈现这些画的纸,你可以利用很多线程生成很多张图,但是默认图就只有一张。

tf.Graph().as_default() 表示将这个类实例,也就是新生成的图作为整个 tensorflow 运行环境的默认图,如果只有一个主线程不写也没有关系,tensorflow 里面已经存好了一张默认图,可以使用tf.get_default_graph() 来调用(显示这张默认纸),当你有多个线程就可以创造多个tf.Graph(),就是你可以有一个画图本,有很多张图纸,这时候就会有一个默认图的概念了。

具体的示例代码如下,和图中的一样:

 1 import tensorflow as tf
 2 c=tf.constant(4.0)
 3 assert c.graph is tf.get_default_graph() #看看主程序中新建的一个变量是不是在默认图里
 4 g=tf.Graph()
 5 with g.as_default():
 6     c=tf.constant(30.0)
 7     assert c.graph is g
 8 '''
 9 最终结果是没有报错
10 '''

结语:以上内容纯属自己理解,如有不当之处还请指正;欢迎转载,标明出处。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM