
推荐《Computer Vision: Models, Learning, and Inference》
可以到这儿下载 http://www.computervisionmodels.com/
另附读后感
《Computer vision:models,learning and inference》系列讨论一
http://blog.sina.com.cn/s/blog_6bbd2dd10100svyx.html
《Computer vision:models,learning and inference》系列讨论二
http://blog.sina.com.cn/s/blog_6bbd2dd10100t0ur.html
Contents
Part I: Probability
1. Introduction to probability
2. Probability distributions
3. Fitting probability distributions
4. The multivariate normal
Part II: Machine learning for machine vision
5. Learning and inference
6. Complex probability densities
7. Regression models for vision
8. Classification models for vision
Part III: Connecting local models
9. Graphical models
10. Directed models for images
11. Markov random fields
Part IV: Preprocessing
12. Preprocessing methods
Part V: Models for geometry
13. Pinhole camera model
14. Transformation models
15. Multiple cameras
Part VI: Computer vision models
16. Models for shape
17. Models for identity and style
18. Temporal models
19. Models for visual words
Part VI Appendices
A. Optimization
B. Image preprocessing and feature extraction
C. Linear algebra
D. Algorithms