推薦《Computer Vision: Models, Learning, and Inference》


推薦《Computer Vision:  Models, Learning, and Inference》

可以到這兒下載 http://www.computervisionmodels.com/

另附讀后感
《Computer vision:models,learning and inference》系列討論一
http://blog.sina.com.cn/s/blog_6bbd2dd10100svyx.html
《Computer vision:models,learning and inference》系列討論二
http://blog.sina.com.cn/s/blog_6bbd2dd10100t0ur.html

Contents

Part I: Probability
 
1. Introduction to probability
2. Probability distributions
3. Fitting probability distributions
4. The multivariate normal

Part II: Machine learning for machine vision
 
5. Learning and inference
6. Complex probability densities
7. Regression models for vision
8. Classification models for vision
 
Part III: Connecting local models

9. Graphical models
10. Directed models for images
11. Markov random fields
 
Part IV: Preprocessing
 
12. Preprocessing methods
 
Part V: Models for geometry

13. Pinhole camera model
14. Transformation models
15. Multiple cameras

Part VI: Computer vision models
 
16. Models for shape
17. Models for identity and style
18. Temporal models
19. Models for visual words

Part VI Appendices
 
A. Optimization
B. Image preprocessing and feature extraction
C. Linear algebra
D. Algorithms


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM