原文:分類結果評價指標——Kappa系數

kappa系數是用來衡量兩個變量一致性的指標,如果將兩個變量換為分類結果和驗證樣本,就可以用來評價分類精度了。計算公式如下: kappa Po Pe Pe 其中,Po是總體精度,Pe是偶然一致性誤差 即使是兩個完全獨立的變量,一致性也不會為 ,仍存在偶然現象,使兩個變量存在一致的情況,所以仍要提取偶然一致性。計算過程如下圖: ...

2021-11-03 22:07 2 2973 推薦指數:

查看詳情

分類評價指標

預測值(0,1)。 多分類:一個目標的標簽是幾種之一(如:0,1,2…) 2.評價指標 ① ...

Tue Aug 10 04:20:00 CST 2021 0 101
分類模型評價指標

一、模型評價的意義 在完成模型構建之后,必須對模型的效果進行評估,根據評估結果來繼續調整模型的參數、特征或者算法,以達到滿意的結果。 評價一個模型最簡單也是最常用的指標就是准確率,但是在沒有任何前提下使用准確率作為評價指標,准確率往往不能反映一個模型性能的好壞,例如在不平衡的數據集上,正類樣本 ...

Mon Oct 15 08:14:00 CST 2018 0 12288
分類算法評價指標

1. 准確率/召回率/f1分數 2. Auc(一般用於二分類) 3. kappa系數(一般用於多分類) 3.1 簡單kappa(simple kappaKappa系數用於一致性檢驗,代表着分類與完全隨機的分類產生錯誤減少的比例,kappa系數的計算是基於混淆矩陣的。 kappa ...

Sat Nov 16 10:42:00 CST 2019 0 364
kappa系數

,則代表模型實現的分類准確度越高 """ def kappa(matrix): n = np. ...

Thu Sep 05 00:28:00 CST 2019 0 1419
【一致性檢驗指標Kappa(cappa)系數

1 定義 百度百科的定義: 它是通過把所有地表真實分類中的像元總數(N)乘以混淆矩陣對角線(Xkk)的和,再減去某一類地表真實像元總數與被誤分成該類像元總數之積對所有類別求和的結果,再除以總像元數的平方減去某一類中地表真實像元總數與該類中被誤分成該類像元總數之積對所有類別求和的結果所得 ...

Sat May 23 10:20:00 CST 2020 0 1373
分類模型評價指標說明

目錄 分類模型評價指標說明 混淆矩陣 例子 混淆矩陣定義 混淆矩陣代碼 正確率 真陽率和假陽率 真陽率 假陽率 真陽率和假陽率的公式 ...

Sun Aug 11 07:32:00 CST 2019 0 639
分類模型的評價指標Fscore

小書匠 深度學習 分類方法常用的評估模型好壞的方法. 0.預設問題 假設我現在有一個二分類任務,是分析100封郵件是否是垃圾郵件,其中不是垃圾郵件有65封,是垃圾郵件有35封.模型最終給郵件的結論 ...

Thu Jun 07 00:55:00 CST 2018 0 11835
10. 混淆矩陣、總體分類精度、Kappa系數

一、前言 表征分類精度的指標有很多,其中最常用的就是利用混淆矩陣、總體分類精度以及Kappa系數。 其中混淆矩陣能夠很清楚的看到每個地物正確分類的個數以及被錯分的類別和個數。但是,混淆矩陣並不能一眼就看出類別分類精度的好壞,為此從混淆矩陣衍生出來各種分類精度指標,其中總體分類精度(OA)和卡帕 ...

Mon Sep 14 05:10:00 CST 2015 0 20019
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM