1. TP TN FP FN GroundTruth 預測結果 TP(True Positives): 真的正樣本 = 【正樣本 被正確分為 正樣本】 TN(True Negatives): ...
參考:語義分割代碼閱讀 評價指標mIoU的計算 參考: 分割網絡評價指標 dice系數和IOU之間的區別和聯系 參考: numpy.array 的邏輯運算 參考:numpy.bincount詳解 參考:深度學習之語義分割中的度量標准 寫在前面,關於計算時候需要注意的問題: K.sum 在計算的時候會受到 numpy.array 的 dtype 影像,如果是 uint 格式的話,算出的結果也是這個 ...
2021-07-11 22:22 1 491 推薦指數:
1. TP TN FP FN GroundTruth 預測結果 TP(True Positives): 真的正樣本 = 【正樣本 被正確分為 正樣本】 TN(True Negatives): ...
語義分割,簡單地講就是給一張圖像,分割分出一個物體的准確輪廓。其實就是分類任務,而分類任務預測的結果往往就是一下四種: TP:True Positive FP:False Positive TN:True Negative FN:False Negative 其中,T/F ...
Precision又叫查准率,Recall又叫查全率。這兩個指標共同衡量才能評價模型輸出結果。 TP: 預測為1(Positive),實際也為1(Truth-預測對了) TN: 預測為0(Negative),實際也為0(Truth-預測對了) FP: 預測為1(Positive ...
記正樣本為P,負樣本為N,下表比較完整地總結了准確率accuracy、精度precision、召回率recall、F1-score等評價指標的計算方式: (右鍵點擊在新頁面打開,可查看清晰圖像) 簡單版: ******************************************************************** ...
目錄 結果表示方法 常規指標的意義與計算方式 ROC和AUC 結果表示方法 TP – True Positive FN – False Negative TN – True Negative FP – False Positive ...
准確率 Accuracy 精確率 Precision 召回率 Recall F1(綜合Precision與Recall) ROC曲線 PR曲線 ...
好記性不如爛筆頭 ...
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四個基本概念TP、True Positive 真陽性:預測 ...