https://blog.csdn.net/lanchunhui/article/details/50482842 ...
凸函數的定義 . 一元凸函數與凹函數 對於一元函數 f x ,若滿足 f x 在 a,b 上連續,且對於任意 x , x ,恆有: f frac x x ge frac f x f x 則稱 f x 在 a,b 上是向上凸的,簡稱上凸,此時 f x 為 a,b 的凹函數,如圖 若恆有: f frac x x le frac f x f x 則稱 f x 在 a,b 上是向下凸的,簡稱下凸,此時 ...
2020-11-30 15:52 0 903 推薦指數:
https://blog.csdn.net/lanchunhui/article/details/50482842 ...
若f(x)為區間I上的下凸(上凸)函數,則對於任意xi∈I和滿足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i ...
(1)定義 設f是定義域為實數的函數,如果對所有的實數x,f(x)的二階導數都大於0,那么f是凸函數。 Jensen不等式定義如下: 如果f是凸函數,X是隨機變量,那么: 。當且僅當X是常量時,該式取等號。其中,E(X)表示X的數學期望。 注:Jensen不等式應用於凹函數時,不等號方向 ...
轉載自:碎片化學習之數學(一):Jensen不等式 定義:對於一個凸函數\(f\),都有函數值的期望大於等於期望的函數值:$$E[f(x)]\geq f(E[x])$$上式當中\(x\)是一個隨機變量,它可以是離散的或者連續的,假設\(x~p(x)\) 。 回顧一下凸函數的定義:對於任意的值 ...
Jensen不等式的形式有很多種,這里重點關注有關於隨機變量期望的形式。 1 Jensen不等式 Jensen不等式:已知函數\(\phi: \mathbb{R}\to\mathbb{R}\)為凸函數,則有\(\phi[\text{E}(X)]\leq \text{E}[\phi(X ...
若 $f(x)$ 是區間 $[a,b]$ 上的凹函數,則對任意的 $x_{1},x_{2},...,x_{n} \in [a,b]$,且 $\sum_{i = 1}^{n}\lambda_{i} = 1, \lambda_{i} > 0$,有不等式 $$\sum_{i = 1}^{n ...
前言 方程和不等式 在初中,我們稱\(x^2-3x+2=0\)為方程,稱\(x^2-3x+2\leqslant 0\)為不等式。而高中階段的方程和不等式中往往會滲透函數,故引出函數方程和函數不等式。 函數方程 比如,給定函數\(f(x)=\left\{\begin{array}{l ...
若$0<\beta<\alpha<\frac{\pi}{2}$,求證: $\sin\alpha-\sin\beta<\alpha-\beta<\tan\alpha-\ta ...