算法介紹:歐拉篩法是在O(N)線性時間內實現素數篩選的優秀算法。 算法思路:總體上與Eratosthenes篩法類似,也是用較小的數篩去較大的合數。 關鍵思路在於:每一個合數都保證是被其最小的質因子篩去的,下簡稱稱該條件為線性條件。 結合代碼分析: 對每一個數i,無論其是否為質數 ...
目錄 Bases 篩法 Code View Bases 這里給出的篩法是以線性篩素數的方法為基礎的。 利用了歐拉函數是積性函數的性質:對於任意互質的數 a , b ,有 f a b f a f b 篩法 類比於線性篩素數。 i 以下的歐拉函數已經被篩出,我們利用 i 和 prim 往后更新。 如果 i 是素數,那么 varphi i i 如果 i prim j ,那么 i,prim j , 則有 ...
2020-08-07 14:57 0 1157 推薦指數:
算法介紹:歐拉篩法是在O(N)線性時間內實現素數篩選的優秀算法。 算法思路:總體上與Eratosthenes篩法類似,也是用較小的數篩去較大的合數。 關鍵思路在於:每一個合數都保證是被其最小的質因子篩去的,下簡稱稱該條件為線性條件。 結合代碼分析: 對每一個數i,無論其是否為質數 ...
前言 蒟蒻最近准備狂補數學啦TAT 基於篩素數,可以同時快速求出歐拉函數。於是蒟蒻准備從這里入手,整理一下實現的思路。 篩素數及其一種改進寫法 傳統篩素數的做法(埃式篩)是,利用已知的素數,去篩掉含有此質因子的合數,十分巧妙。由於不是本文的重點,就只貼一下代碼吧 復雜度不會證 ...
蒟蒻要開始打數論模板了。 歐拉函數:小於n且與n互素的數個數,記為φ(n) 它有這樣幾個優越的性質:轉自https://yq.aliyun.com/articles/15314 1. phi(p) == p-1 因為素數p除了1以外的因子只有p,所以與 p 互素的個數是 p ...
昨天的考試跪的一塌糊塗:第一題水過,第二題帶WA的朴素,最后題忘了特判左端點全跪,分數比起預計得分整整打了個對折啊! 步入正題:線性篩(歐拉篩) 一般的篩法(PPT里叫埃拉托斯特尼篩法,名字異常高貴)的效率是O(NlglgN)(其實很接近O(n)啊!),對於一些例如N=10000000的殘暴 ...
線性篩是一個很基礎的算法,但是我一直沒學。直到一次考試,因為O(n√n)會超時,用了表篩,結果被卡了代碼長度,於是開始學習歐拉篩。 算法思路: 對於每一個數(無論質數合數)x,篩掉所有小於x最小質因子的質數乘以x的數。比如對於77,它分解質因數是7*11,那么篩掉所有小於7的質數*77,篩 ...
歐拉系列 歐拉函數:phi(i)表示 1~i 中與 i 互質的數的個數。 利用這個定義就可以在篩素數的同時,求出歐拉函數。 設 歐拉函數 為 phi(x) , p 為素數: 1、如果 i % p == 0 ,那么 phi (i*p) = phi (i) * p。 顯然,與 i ...
歐拉篩 【算法簡介】 由於每個大於等於2的合數必定存在一個最小的質因數,所以只要篩去每個質數的倍數就相當於篩去了所有合數。但歐拉篩相比埃氏篩最大的優化就在於歐拉篩保證每個合數只被篩了一次,且是被其最小的質因數篩去的,所以歐拉篩的時間復雜度可以達到O(N)。 而如何保證每個合數都只 ...
歐拉篩 質數篩 也稱線性篩 它比時間復雜度為 \(O(n\log\log n)\) 的埃氏篩更優,因為埃氏篩會有篩重。 歐拉篩保證每個合數只會被它的最小質因數篩掉,所以每個數只會被篩一次。 時間復雜度 \(O(n)\) 歐拉函數篩 特殊地,對於一個質數 \(p ...