關於卷積操作是如何進行的就不必多說了,結合代碼一步一步來看卷積層是怎么實現的。 代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下其基本的組件函數,首先是determine_padding(filter_shape ...
代碼來源:https: github.com eriklindernoren ML From Scratch 卷積神經網絡中卷積層Conv D 帶stride padding 的具體實現:https: www.cnblogs.com xiximayou p .html 激活函數的實現 sigmoid softmax tanh relu leakyrelu elu selu softplus :ht ...
2020-04-16 16:53 0 1082 推薦指數:
關於卷積操作是如何進行的就不必多說了,結合代碼一步一步來看卷積層是怎么實現的。 代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下其基本的組件函數,首先是determine_padding(filter_shape ...
本文只討論CNN中的卷積層的結構與計算,不討論步長、零填充等概念,代碼使用keras。 一些名詞: 卷積核,別名“過濾器”、“特征提取器”。 特征映射,別名“特征圖”。 至於神經元和卷積核在CNN中的區別,可以看參考7(結合參考6)中Lukas Zbinden 寫的答案 ...
卷積神經網絡中的反向傳播 反向傳播是梯度下降法在神經網絡中應用,反向傳播算法讓神經網絡的訓練成為來可能。 首先要弄清一點,神經網絡的訓練過程就是求出一組較好的網絡權值的過程。反向傳播的直觀解釋就是先用當前網絡的權值計算結果,然后根據計算結果和真實結果的差值來更新網絡的權值,使得計算結果和真實 ...
scipy的signal模塊經常用於信號處理,卷積、傅里葉變換、各種濾波、差值算法等。 *兩個一維信號卷積 >>> import numpy as np >>> x=np.array([1,2,3]) >>> h=np.array([4,5,6 ...
tf.nn.conv2d是TensorFlow里面實現卷積的函數,參考文檔對它的介紹並不是很詳細,實際上這是搭建卷積神經網絡比較核心的一個方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None ...
在卷積神經網絡(CNN)前向傳播算法中,我們對CNN的前向傳播算法做了總結,基於CNN前向傳播算法的基礎,我們下面就對CNN的反向傳播算法做一個總結。在閱讀本文前,建議先研究DNN的反向傳播算法:深度神經網絡(DNN)反向傳播算法(BP) 1. 回顧DNN的反向傳播算法 ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...