這是對之前的Momentum的一種改進,大概思路就是,先對參數進行估計,然后使用估計后的參數來計算誤差 具體實現: 需要:學習速率 ϵ, 初始參數 θ, 初始速率v, 動量衰減參數α每步迭代過程: ...
動量法的結論: .動量方法主要是為了解決Hessian矩陣病態條件問題 直觀上講就是梯度高度敏感於參數空間的某些方向 的。 .加速學習 .一般將參數設為 . , . ,或者 . ,分別表示最大速度 倍, 倍, 倍於SGD的算法。 .通過速度v,來積累了之間梯度指數級衰減的平均,並且繼續沿該方向移動。 算法基本流程: 動量方法直白解釋: 如圖所示,紅色為SGD Momentum。黑色為SGD。可以 ...
2020-04-01 18:43 0 1325 推薦指數:
這是對之前的Momentum的一種改進,大概思路就是,先對參數進行估計,然后使用估計后的參數來計算誤差 具體實現: 需要:學習速率 ϵ, 初始參數 θ, 初始速率v, 動量衰減參數α每步迭代過程: ...
引入動量(Momentum)方法一方面是為了解決“峽谷”和“鞍點”問題;一方面也可以用於SGD 加速,特別是針對高曲率、小幅但是方向一致的梯度。 如果把原始的 SGD 想象成一個紙團在重力作用向下滾動,由於質量小受到山壁彈力的干擾大,導致來回震盪;或者在鞍點處因為質量小速度很快 ...
特點:具有超線性收斂速度,只需要計算梯度,避免計算二階導數 算法步驟 \(step0:\) 給定初始值\(x_0\),容許誤差\(\epsilon\) \(step1:\) 計算梯度\(g_k=\nabla f(x_k)\),if \(norm(g_k)<=\epsilon ...
一、牛頓法 對於優化函數\(f(x)\),在\(x_0\)處泰勒展開, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其線性部分,忽略高階無窮小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
特點 相較於: 最優化算法3【擬牛頓法1】 BFGS算法使用秩二矩陣校正hesse矩陣的近似矩陣\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 將函數在\(x_{k+1}\)處二階展開 ...
一、動量的誕生 1967年,Levy發表《Relative Strength as a Criterion for Investment Selection》認為購買歷史上最強勢的股票的利潤高於隨機選擇的股票。而與此同時,在20世紀60、70年代,EMH在芝加哥大學誕生和完善,根據半強型EMH ...
1、寫在最前: 在此只是簡單在應用層面說明一下相關算法,嚴謹的數學知識,請大家參考最下面參考書目,后期有精力會進行細化,先占個坑。 2、基本知識: 泰勒展開式為: \[\begin{aligned} f(x) &=\frac{1}{0 !} f\left(x_ ...
第四章:最速下降算法。最速下降法、擬牛頓法等都是求解准則函數(即無約束優化問題)的算法,這就需要有一個 ...