原文:五、Sklearn朴素貝葉斯分類

參考url: https: jakevdp.github.io PythonDataScienceHandbook . naive bayes.html 朴素貝葉斯模型是一組非常簡單快速的分類算法,通常適用於維度非常高的數據集。 因為運行速度快,而且可調參數少,因此非常適合為分類問題提供快速粗糙的基本方案。 貝葉斯分類 朴素貝葉斯分類器建立在貝葉斯分類方法的基礎上,其數學基礎是貝葉斯定理 Baye ...

2020-03-19 17:18 0 3792 推薦指數:

查看詳情

朴素算法——實現新聞分類Sklearn實現)

1、朴素實現新聞分類的步驟 (1)提供文本文件,即數據集下載 (2)准備數據 將數據集划分為訓練集和測試集;使用jieba模塊進行分詞,詞頻統計,停用詞過濾,文本特征提取,將文本數據向量化 停用詞文本stopwords_cn.txt下載 ...

Sat Aug 04 18:10:00 CST 2018 0 3739
朴素分類

先上問題吧,我們統計了14天的氣象數據(指標包括outlook,temperature,humidity,windy),並已知這些天氣是否打球(play)。如果給出新一天的氣象指標數據:sunny,c ...

Thu Jul 12 01:20:00 CST 2012 5 19654
sklearn中的朴素算法

sklearn中的朴素貝葉斯分類器 之前理解朴素中的結尾對sklearn中的朴素進行了簡單的介紹. 此處對sklearn中的則對sklearn中的朴素算法進行比較詳細介紹.不過手下還是對朴素本身進行一些補充. 朴素算法 朴素算法的數學基礎都是圍繞 ...

Sun Dec 17 21:04:00 CST 2017 0 2358
朴素和情感分類

朴素和情感分類 分類問題在人類和機器智能中廣泛應用:郵件分類、作業打分等。這篇博客介紹了朴素方法及其在文本分類方面的應用。其中文本分類的例子采用情感分析,就是從文本中進行情感抽取,並判斷作者對特定事物的態度是積極還是消極,例如影評和書評的分析。情感分析中最簡單的任務是二分類任務,文字 ...

Fri Apr 19 19:30:00 CST 2019 0 1067
朴素的學習與分類

概念簡介: 朴素斯基於貝葉斯定理,它假設輸入隨機變量的特征值是條件獨立的,故稱之為“朴素”。簡單介紹貝葉斯定理: 乍看起來似乎是要求一個概率,還要先得到額外三個概率,有用么?其實這個簡單的公式非常貼切人類推理的邏輯,即通過可以觀測的數據,推測不可觀測的數據。舉個例子,也許你在辦 ...

Sun Sep 23 01:52:00 CST 2012 1 2919
朴素分類算法原理

一個簡單的例子 朴素算法是一個典型的統計學習方法,主要理論基礎就是一個公式,公式的基本定義如下: 這個公式雖然看上去簡單,但它卻能總結歷史,預知未來。公式的右邊是總結歷史,公式的左邊是預知未來,如果把Y看出類別,X看出特征,P(Yk|X)就是在已知特征X ...

Fri May 05 03:21:00 CST 2017 1 12244
朴素分類算法

貝葉斯定理是關於隨機事件A和B的條件概率的一則定理(比如常見的:P(A|B)是在B發生的情況下A發生的可能性)。 朴素的含義是各特征相互獨立,且同等重要。某些 分類算法均以貝葉斯定理為基礎。由此產生了 朴素分類算法。 朴素分類算法的思想基礎是:對於給出 ...

Tue Oct 22 21:54:00 CST 2019 0 579
分類算法 - 朴素

  朴素(Naive Bayesian)是基於貝葉斯定理和特征條件獨立假設的一種分類算法。朴素想必是很多人在剛學習機器學習時想去第一個學習的算法,因為它朴素呀、簡單呀(我記得當時的想法就是這樣)。它真的那么簡單么?今天我們就來討論一下這個“簡單”的機器學習算法。 貝葉斯定理 ...

Wed Nov 08 00:06:00 CST 2017 0 1305
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM