定義&求解 設數列 \(B_{n}\) 為伯努利數,滿足一下性質: \[\begin{aligned} B_{0}&=1\\ \sum^{n}_{i=0}\binom{n+1}{i}B_{i}&=0\\ \end{aligned} \] 在 OI 中一般 ...
題面 https: www.luogu.com.cn problem P 題解 前置知識 Pollard rho https: www.luogu.com.cn problemnew solution P Miller rabin https: www.cnblogs.com xh p .html 莫比烏斯反演: 具體數學:計算機科學基礎 . 節 以及它的基礎應用: https: www.cnbl ...
2020-02-11 21:13 0 183 推薦指數:
定義&求解 設數列 \(B_{n}\) 為伯努利數,滿足一下性質: \[\begin{aligned} B_{0}&=1\\ \sum^{n}_{i=0}\binom{n+1}{i}B_{i}&=0\\ \end{aligned} \] 在 OI 中一般 ...
伯努利數與自然數冪和 眾所周知 \[1 + 1 + ... + (n-1)^0 = n \] \[1 + 2 + ... + (n-1) = \dfrac{n(n-1)}{2} = \dfrac{1}{2}n^2-\dfrac{n}{2} \] \[1^2+2 ...
伯努利數 \(B_0=1,B_1=-\frac{1}{2},B_2=\frac{1}{6},B_3=0,B_4=\frac{1}{30}\) 可以利用下面的式子計算。 \[B_0=1,\sum_{i=0}^nB_iC_{n+1}^i=0 \] 轉化: \[\begin ...
伯努利數公式: 伯努利數滿足條件,且有 那么繼續得到 這就是伯努利數的遞推式,逆元部分同樣可以預處理。 ...
設B0=1,當k>0時,定義 這些Bi(i=0, 1,…, k)被稱為伯努利數。按定義,自然得出:B1=-,B2=,B3=0,B4=-,B5=0,B6=,B7=0,B8=-,…。伯努利數是瑞士數學家雅各布·伯努利引入的數,出自於他的著作《猜度術》(1713)。除了B1外,當k為奇數時 ...
先看一下差分序列和斯特林數。https://riteme.github.io/blog/2016-11-29/delta-and-stirling.html 數學上,伯努利數 \(B_n\)的第一次發現與下述數列和的公式有關:$$\sum_{k=1} ^ {n} k ^ m = 1 ^ m ...
二百多年來,這個理論已成為經典。 只是本人始終覺得有悖常理,覺得好像哪里不對。天空中的風總是高氣壓流向低氣壓,水總是流向空洞,怎么會流的快的地方反而壓力小呢?如果壓力小,那么導致它快速流動的能量從哪 ...
狄利克雷卷積 定義:如果函數 \(F,f,g\) 滿足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 則 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷積,記作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...