原文:機器學習--支持向量機 (SVM)算法的原理及優缺點

一 支持向量機 SVM 算法的原理 支持向量機 Support Vector Machine,常簡稱為SVM 是一種監督式學習的方法,可廣泛地應用於統計分類以及回歸分析。它是將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面,分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。 .支持向量 ...

2019-10-29 20:58 0 3323 推薦指數:

查看詳情

Python機器學習算法支持向量SVM

SVM--簡介 支持向量(Support Vector Machines)是一種二分類模型,它的目的是尋找一個超平面來對樣本進行分割,分割的原則是間隔最大化,最終轉化為一個凸二次規划問題來求解。 在機器學習領域,是一個有監督的學習模型,通常用來進行 ...

Fri Jun 29 07:42:00 CST 2018 0 1017
機器學習支持向量SVM

感謝中國人民大學胡鶴老師,課程深入淺出,非常好 一、關於SVM 可以做線性分類、非線性分類、線性回歸等,相比邏輯回歸、線性回歸、決策樹等模型(非神經網絡)功效最好 傳統線性分類:選出兩堆數據的質心,並做中垂線(准確性低)——上圖左 SVM:擬合的不是一條線,而是兩條平行線,且這兩條 ...

Mon Oct 30 18:11:00 CST 2017 0 1965
機器學習支持向量算法(二)

五、SVM求解實例   上面其實已經得出最終的表達式了,下面我們會根據一些具體的點來求解α的值。數據:3個點,其中正例 X1(3,3) ,X2(4,3) ,負例X3(1,1) 如下圖所示       我們需要求解下式的極小值       注意約束條件(在這里不要忘記了yi代表的是數據 ...

Mon Sep 16 19:34:00 CST 2019 0 331
機器學習支持向量算法(一)

一、問題引入   支持向量(SVM,Support Vector Machine)在2012年前還是很牛逼的,但是在12年之后神經網絡更牛逼些,但是由於應用場景以及應用算法的不同,我們還是很有必要了解SVM的,而且在面試的過程中SVM一般都會問到。支持向量是一個非常經典且高效的分類模型 ...

Mon Sep 16 06:18:00 CST 2019 0 722
coursera機器學習-支持向量SVM

#對coursera上Andrew Ng老師開的機器學習課程的筆記和心得; #注:此筆記是我自己認為本節課里比較重要、難理解或容易忘記的內容並做了些補充,並非是課堂詳細筆記和要點; #標記為<補充>的是我自己加的內容而非課堂內容,參考文獻列於文末。博主能力有限,若有錯誤,懇請指正; #------------------------------------------------ ...

Sat Dec 07 21:42:00 CST 2013 0 2447
機器學習——支持向量(SVM)之核函數(kernel)

對於線性不可分的數據集,可以利用核函數(kernel)將數據轉換成易於分類器理解的形式。   如下圖,如果在x軸和y軸構成的坐標系中插入直線進行分類的話, 不能得到理想的結果,或許我們可以對圓中的數 ...

Mon Nov 28 03:52:00 CST 2016 0 6411
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM