一、混淆矩陣 T和F代表是否預測正確,P和N代表預測為正還是負 這個圖片我們見過太多次了,但其實要搞清楚我們的y值中的1定義是什么,這樣就不會搞錯TP、FP、FN、TN的順序,比如說下面的混淆 ...
ACC, Precision and Recall 這些概念是針對 binary classifier 而言的. 准確率 accuracy 是指分類正確的樣本占總樣本個數的比例. 精確率 precision 是指分類正確的正樣本占預測為正的樣本個數的比例. 是針對預測而言的. 在信息檢索領域稱為查准率. 召回率 recall 是指分類正確的正樣本占真正的正樣本個數的比例. 是針對樣本而言的. 在信 ...
2019-07-13 11:47 0 653 推薦指數:
一、混淆矩陣 T和F代表是否預測正確,P和N代表預測為正還是負 這個圖片我們見過太多次了,但其實要搞清楚我們的y值中的1定義是什么,這樣就不會搞錯TP、FP、FN、TN的順序,比如說下面的混淆 ...
主要內容 1.TPR、FPR、precision、recall、accuracy、ROC、AUC概念介紹 2.ROC曲線如何通過TPR、FPR得到 3.用sklearn.metric 如何計算TPR、FPR得到ROC曲線。用sklearn.metric 如何計算AUC ...
目錄 結果表示方法 常規指標的意義與計算方式 ROC和AUC 結果表示方法 TP – True Positive FN – False Negative TN – True Negative FP – False Positive ...
1. Precision和Recall Precision,准確率/查准率。Recall,召回率/查全率。這兩個指標分別以兩個角度衡量分類系統的准確率。 例如,有一個池塘,里面共有1000條魚,含100條鯽魚。機器學習分類系統將這1000條魚全部分類為“不是鯽魚”,那么准確率也有90 ...
1.Precision, Recall 准確率 \(Accuracy = \frac{TP+TN}{TP+TN+FP+FN}\) 精確率(或命中率) \(Precision = \frac{TP}{TP+FP}\),預測為positive中,實際為positive的比例,反映分類器的准確性 ...
ROC曲線 ROC曲線的全稱是“接收者操作特征曲線”(receiver operating characteristic curve),它是一種坐標圖式的分析工具,用於: 選擇最佳的信號偵測模型、舍棄次佳的模型。 在同一模型中設置最佳閾值。 ROC曲線淵源 ROC曲線起源於 ...
最近做了一些分類模型,所以打算對分類模型常用的評價指標做一些記錄,說一下自己的理解。使用何種評價指標,完全取決於應用場景及數據分析人員關注點,不同評價指標之間並沒有優劣之分,只是各指標側重反映的信息不同。為了便於后續的說明,先建立一個二分類的混淆矩陣 ,以下各參數的說明都是針對二元分類 ...
一、前述 怎么樣對訓練出來的模型進行評估是有一定指標的,本文就相關指標做一個總結。 二、具體 1、混淆矩陣 混淆矩陣如圖: 第一個參數true,false是指預測的正確性。 第二個參數true,postitives是指預測的結果。 相關公式: 檢測正列的效果 ...