原文地址:http://blog.csdn.net/hjimce/article/details/47323463 作者:hjimce 卷積神經網絡算法是n年前就有的算法,只是近年來因為深度學習相關算法為多層網絡的訓練提供了新方法,然后現在電腦的計算能力已非 ...
LeNet 模型簡介 LeNet 模型是 Yann LeCun 教授於 年在論文 Gradient based learning applied todocument recognitionr 中提出的,它是第一個成功應用於數字識別問題的卷積神經網絡。在 MNIST 數據集上, LeNet 模型可以達到大約 . 的正確率。 LeNet 模型結構 LeNet 模型總共有 層 ,下圖展示了LeNet ...
2019-06-27 10:55 0 3056 推薦指數:
原文地址:http://blog.csdn.net/hjimce/article/details/47323463 作者:hjimce 卷積神經網絡算法是n年前就有的算法,只是近年來因為深度學習相關算法為多層網絡的訓練提供了新方法,然后現在電腦的計算能力已非 ...
1、GoogLeNet 模型簡介 GoogLeNet 是2014年Christian Szegedy提出的一種全新的深度學習結構,該模型獲得了ImageNet挑戰賽的冠軍。 2、GoogLeNet 模型的提出 1)在這之前的AlexNet、VGG等結構都是通過增大網絡的深度(層數)來獲得更好 ...
LeNet-5是Yann LeCun在1998年設計的用於手寫數字識別的卷積神經網絡,當年美國大多數銀行就是用它來識別支票上面的手寫數字的,它是早期卷積神經網絡中最有代表性的實驗系統之一。可以說,LeNet-5就相當於編程語言入門中的“Hello world!”。 但是很奇怪的,原本 ...
html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 10 ...
在前面我們講述了DNN的模型與前向反向傳播算法。而在DNN大類中,卷積神經網絡(Convolutional Neural Networks,以下簡稱CNN)是最為成功的DNN特例之一。CNN廣泛的應用於圖像識別,當然現在也應用於NLP等其他領域,本文我們就對CNN的模型結構做一個總結 ...
開局一張圖,內容全靠編。 上圖引用自 【卷積神經網絡-進化史】從LeNet到AlexNet. 目前常用的卷積神經網絡 深度學習現在是百花齊放,各種網絡結構層出不窮,計划梳理下各個常用的卷積神經網絡結構。 目前先梳理下用於圖像分類的卷積神經網絡 LeNet AlexNet ...
四、其他常見神經網絡 1、深度學習模型 感知機只包括輸入層和輸出層,只能處理線性任務,為了處理非線性任務,在輸入和輸出之間加入了隱層,隱層的目的是對數據進行加工處理傳遞給輸出層。 為了解決更為復雜的問題,我們需要提升模型的學習能力,這時要增加模型的復雜度,有兩種策略 ...
摘要:LeNet-5是Yann LeCun在1998年設計的用於手寫數字識別的卷積神經網絡,當年美國大多數銀行就是用它來識別支票上面的手寫數字的,它是早期卷積神經網絡中最有代表性的實驗系統之一。可以說,LeNet-5就相當於編程語言入門中的“Hello world!”。 華為的昇騰訓練芯片 ...