數論函數 陪域:包含值域的任意集合 數論函數:定義域為正整數,陪域為復數的函數 積性函數:對於函數$f(n)$,若存在任意互質的數$a,b$,使得$a*b=n$,並且$f(n)=f(a)*f(b)$,那么函數$f(n)$被稱為積性函數 常見積性函數: $1(i)=1$ $f(i)=i ...
感覺寫的很不錯。。。 特別謝謝這個小哥哥 是小姐姐不要打我。。。 原文地址:https: blog.csdn.net XianHaoMing article details ...
2019-04-11 12:45 0 501 推薦指數:
數論函數 陪域:包含值域的任意集合 數論函數:定義域為正整數,陪域為復數的函數 積性函數:對於函數$f(n)$,若存在任意互質的數$a,b$,使得$a*b=n$,並且$f(n)=f(a)*f(b)$,那么函數$f(n)$被稱為積性函數 常見積性函數: $1(i)=1$ $f(i)=i ...
聽起來很 nb,很有名但比較難學的一個算法類型。然而確實很 nb。 我竟然在學 ymx 一年半前就學過的東西。 1. 反演的本質與第一反演公式 1.1. 什么是反演 反演是通過用 \(f\) ...
一些性質 積性函數:對於函數\(f(n)\),若滿足對任意互質的數字\(a,b,a*b=n\)且\(f(n)=f(a)f(b)\),那么稱函數f為積性函數。 狄利克雷卷積:對於函數f,g,定義它們的卷積為 \((f∗g)(n)=\sum_{d|n}f(d)g(\frac{n}{d ...
)\) 顯然,狄利克雷卷積滿足交換律和分配律。 常見的完全積性函數 1.常函數 \(I(n)=1\) ...
Definition 完全積性函數 單位函數 \[\varepsilon(n)=[n=1] \] 冪函數 \[Id_k(n)=n^k \] 特別地,有: \(k=0 ...
先放上板題 BZOJ3944 洛谷P4213 嗯,杜教篩解決的就是這樣一個喪心病狂的前綴和 \(O(N)\)都會T。。 積性函數## 如果一個數論函數\(f(n)\),滿足若\(m,n\)互 ...
定義出莫比烏斯函數的人似乎對容斥原理有了高深的造詣。這里從狄利克雷卷積(\(Dirichlet\)卷積 ...
目錄 1. 前言 2. 一些基礎函數 3. 積性函數 4. 狄利克雷卷積 5. 總結 6. 參考資料 1. 前言 狄利克雷卷積,是學習與繼續探究 \(\mu\) 函數和 \(\varphi\) 函數的重要前提,因為這兩個函數中有一些更好 ...