前言: 關聯規則是數據挖掘中最活躍的研究方法之一, 是指搜索業務系統中的所有細節或事務,找出所有能把一 組事件或數據項與另一組事件或數據項聯系起來的規則,以獲 得存在於數據庫中的不為人知的或不能確定的信息,它側重於確 定數據中不同領域之間的聯系,也是在無指導學習系統中挖掘本地模式的最普通形式 ...
基礎知識: 用戶 薯片 A 可樂 B 鉛筆 C 羽毛球 D 洗衣液 E 支持度:單個項占總項集的百分比,比如薯片的支持度 ,可樂的支持度 。 置信度:薯片 gt 羽毛球的置信度 ,可樂 gt 羽毛球的置信度 。 一 Apriori算法 假設minsupport . ,得出頻繁項集: 項集C A,B,C,D,E , 頻繁項集L A,B,C,D 頻繁項集進行拼接得到 項集C A,B , A,C , A ...
2019-04-02 16:24 0 1319 推薦指數:
前言: 關聯規則是數據挖掘中最活躍的研究方法之一, 是指搜索業務系統中的所有細節或事務,找出所有能把一 組事件或數據項與另一組事件或數據項聯系起來的規則,以獲 得存在於數據庫中的不為人知的或不能確定的信息,它側重於確 定數據中不同領域之間的聯系,也是在無指導學習系統中挖掘本地模式的最普通形式 ...
我們是通過算法來找到數據之間的關聯規則(兩個物品之間可能存在很強的相關關系)和頻繁項集(經常出現在一起的物品的集合)。 我們是通過支持度和置信度來定義關聯規則和頻繁項集的 一個項集支持度是指在所有數據集中出現這個項集的概率,項集可能只包含一個選項,也有可能是多個選項的組合。 置信 ...
上篇介紹了如何構建FP樹,FP樹的每條路徑都滿足最小支持度,我們需要做的是在一條路徑上尋找到更多的關聯關系。 抽取條件模式基 首先從FP樹頭指針表中的單個頻繁元素項開始。對於每一個元素項,獲得其對應的條件模式基(conditional pattern base),單個元素項的條件模式基 ...
計算頻繁項集: 首先生成一個數據集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
頻繁模式和對應的關聯或相關規則在一定程度上刻畫了屬性條件與類標號之間的有趣聯系,因此將關聯規則挖掘用於分類也會產生比較好的效果。關聯規則就是在給定訓練項集上頻繁出現的項集與項集之間的一種緊密的聯系。其中“頻繁”是由人為設定的一個閾值即支持度 (support)來衡量,“緊密”也是由人為設定的一個 ...
大家好,下面為大家分享的實戰案例是K-頻繁相機挖掘並行化算法。相信從事數據挖掘相關工作的同學對頻繁項集的相關算法 比較了解,這里我們用Apriori算法及其優化算法實現。 首先說一下實驗結果。對於2G,1800W條記錄的數據,我們用了18秒就算完了1-8頻繁項集的挖掘。應該 ...
需要掃描多個事物數據集,增加IO開銷。會產生2的k次方頻繁項集。 ...
上一章我們討論了從數據集中獲取有趣信息的方法,最常用的兩種分別是頻繁項集與關聯規則。第11章中介紹了發現頻繁項集與關鍵規則的算法,本章將繼續關注發現頻繁項集這一任務。我們會深人探索該任務的解決方法,並應用FP-growth算法進行處理,該算法能夠更有效地挖掘數據。這種算法雖然能更為高效地發現 ...