擬牛頓法 擬牛頓法是求解非線性優化問題最有效的方法之一。DFP、BFGS、L-BFGS算法都是重要的擬牛頓法。 求函數的根 對f(x)在Xn附近做一階泰勒展開 f(x)=f(Xn)+f’(Xn)(x-Xn) 假設Xn+1是該方程的根 那么就得到 Xn+1=Xn-f(Xn)/f ...
目錄 梯度下降法 機器學習中的梯度下降法 最速下降法 二次型目標函數 牛頓法 Levenberg Marquardt 修正 梯度下降法和牛頓法誰快 共軛方向法 什么是共軛方向 基本的共軛方向法 共軛梯度法 擬牛頓法 秩 修正公式 References 相關博客 經過前一篇博客的簡單介紹,我們對導數 方向導數 梯度應該有一個較為清晰的認識。在知道梯度之后,我們就可以通過一些無約束的優化方法來求極值 ...
2019-03-27 22:36 0 2673 推薦指數:
擬牛頓法 擬牛頓法是求解非線性優化問題最有效的方法之一。DFP、BFGS、L-BFGS算法都是重要的擬牛頓法。 求函數的根 對f(x)在Xn附近做一階泰勒展開 f(x)=f(Xn)+f’(Xn)(x-Xn) 假設Xn+1是該方程的根 那么就得到 Xn+1=Xn-f(Xn)/f ...
故事繼續從選定方向的選定步長講起 首先是下降最快的方向 -- 負梯度方向衍生出來的最速下降法 最速下降法 顧名思義,選擇最快下降。包含兩層意思:選擇下降最快的方向,在這一方向上尋找最好的步長。到達后在下一個點重復該步驟。定方向 選步長 前進... 優化問題的模型:\(min f ...
概述 優化問題就是在給定限制條件下尋找目標函數\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的極值點。極值可以分為整體極值或局部極值,整 ...
的重要性,學習和工作中遇到的大多問題都可以建模成一種最優化模型進行求解,比如我們現在學習的機器學習算法 ...
梯度下降法是沿着梯度下降的算法,該算法的收斂速度受梯度大小影響非常大,當梯度小時算法收斂速度非常慢。 牛頓法是通過把目標函數做二階泰勒展開,通過求解這個近似方程來得到迭代公式,牛頓法的迭代公式中用到了二階導數來做指導,所以牛頓法的收斂速度很快,但是由於要求二階導,所以牛頓法的時間復雜度非常高 ...
在機器學習的優化問題中,梯度下降法和牛頓法是常用的兩種凸函數求極值的方法,他們都是為了求得目標函數的近似解。在邏輯斯蒂回歸模型的參數求解中,一般用改良的梯度下降法,也可以用牛頓法。由於兩種方法有些相似,我特地拿來簡單地對比一下。下面的內容需要讀者之前熟悉兩種算法。 梯度下降法 梯度下降法用來 ...
norm(A,p)當A是向量時norm(A,p) Returns sum(abs(A).^zhip)^(/p), for any <= p <= ∞.norm(A) Returns nor ...
機器學習的本質是建立優化模型,通過優化方法,不斷迭代參數向量,找到使目標函數最優的參數向量。最終建立模型 通常用到的優化方法:梯度下降方法、牛頓法、擬牛頓法等。這些優化方法的本質就是在更新參數。 一、梯度下降法 0、梯度下降的思想 · 通過搜索方向和步長來對參數進行更新。其中搜索 ...