原文:findHomography(src_points, dst_points, CV_RANSAC)

Homography,即單應性,該函數用於求src points轉換為dst poinsts的單應性矩陣 為了理解單應性,必須先引入透視變換的概念 把空間坐標系中的三維物體或對象轉變為二維圖像表示的過程稱為投影變換,根據視點 投影中心 與投影平面之間距離的不同,投影可分為平行投影和透視投影,透視投影即透視變換。平行投影理論上是不存在的,因為它必須在光源距離物體無窮遠時才可能實現,因此我們在平時生活 ...

2019-03-25 23:04 0 1160 推薦指數:

查看詳情

LeetCode:Max Points on a Line

題目鏈接 Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. 分析:首先要注意的是,輸入數組中可能有重復的點。由於兩點確定一條直線,一個很直 ...

Wed Nov 27 04:45:00 CST 2013 8 9700
python entry points 例子

pbr的介紹不多, http://ju.outofmemory.cn/entry/156745 $ mkdir entry_test; cd entry_test; git init $ ...

Tue Jul 07 00:10:00 CST 2015 0 2152
K Closest Points Lintcode

Given some points and a point origin in two dimensional space, find k points out of the some points which are nearest to origin.Return ...

Thu Apr 13 12:21:00 CST 2017 0 1352
Max Points on a Line

Max Points on a Line 題目鏈接:http://oj.leetcode.com/problems/max-points-on-a-line/   Given n points on a 2D plane, find the maximum number ...

Tue May 20 04:01:00 CST 2014 0 3279
[leetcode]Max Points on a Line @ Python

原題地址:https://oj.leetcode.com/problems/max-points-on-a-line/ 題意:Given n points on a 2D plane, find the maximum number of points that lie on the same ...

Fri May 30 18:35:00 CST 2014 1 2444
Max Points on a Line leetcode java

題目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. 題解: 這道題就是給你一個2D平面,然后給你的數據結構是由橫縱坐標表示 ...

Thu Aug 07 08:35:00 CST 2014 0 2702
Bilateral filter error, Assertion failed ((src.type() == CV_8UC1 || src.type() == CV_8UC3) && src.data != dst.data)

一、概述 這個異常是在用OpenCV做高斯雙邊濾波做圖像美化的時候出現的異常。這個異常信息的意思是圖像類型不對。高斯雙邊濾波只允許CV_8UC1或者CV_8UC3即只能加載單通多的灰色圖片或者三通道的彩色圖片。 二、產生的原因   原因在於我在做測試的時候直接 ...

Sat Dec 19 01:25:00 CST 2020 0 508
[論文筆記]Objects as Points

Title:Objects as Points Authors: Xingyi Zhou (UT Austin), Dequan Wang (UC Berkeley), Philipp Kr¨ahenb¨uhl (UT Austin) Paper code-pytorch ...

Wed Jul 03 17:21:00 CST 2019 0 1153
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM