一: 提升方法概述 提升方法是一種常用的統計學習方法,其實就是將多個弱學習器提升(boost)為一個強學習器的算法。其工作機制是通過一個弱學習算法,從初始訓練集中訓練出一個弱學習器,再根據弱學習器的表現對訓練樣本分布進行調整,使得先前弱學習器做錯的訓練樣本在后續受到更多的關注,然后基於調整后 ...
. 歷史及演進 提升學習算法,又常常被稱為Boosting,其主要思想是集成多個弱分類器,然后線性組合成為強分類器。為什么弱分類算法可以通過線性組合形成強分類算法 其實這是有一定的理論基礎的。 年,Kearns和Valiant首先提出了 強可學習 和 弱可學習 的概念,他們指出,在概率近似正確 Probably Approximately Correct, PAC 學習的框架中,一個概念,如果存 ...
2019-02-24 19:17 0 1063 推薦指數:
一: 提升方法概述 提升方法是一種常用的統計學習方法,其實就是將多個弱學習器提升(boost)為一個強學習器的算法。其工作機制是通過一個弱學習算法,從初始訓練集中訓練出一個弱學習器,再根據弱學習器的表現對訓練樣本分布進行調整,使得先前弱學習器做錯的訓練樣本在后續受到更多的關注,然后基於調整后 ...
一、並查集 題、 島嶼問題 【題目】 一個矩陣中只有0和1兩種值,每個位置都可以和自己的上、下、左、右 四個位置相連,如 果有一片1連在一起,這個部分叫做一個島,求一個矩陣中有多少個島? 【舉 ...
集成學習實踐部分也分成三塊來講解: sklearn官方文檔:http://scikit-learn.org/stable/modules/ensemble.html#ensemble 1、GBDT GradientBoostingClassifier:http ...
Boosting方法實際上是采用加法模型與前向分布算法。在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法來表示。以決策樹為基學習器的提升方法稱為提升樹(Boosting Tree)。對分類問題決策樹是CART分類樹,對回歸問題決策樹是CART回歸樹。 1、前向分布算法 ...
Boosting是串行式集成學習方法的代表,它使用加法模型和前向分步算法,將弱學習器提升為強學習器。Boosting系列算法里最著名的算法主要有AdaBoost和梯度提升系列算法(Gradient Boost,GB),梯度提升系列算法里面應用最廣泛的是梯度提升樹(Gradient ...
梯度提升樹(GBDT)的全稱是Gradient Boosting Decision Tree。GBDT還有很多的簡稱,例如GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ),GBRT(Gradient Boosting ...
提升決策樹GBDT 梯度提升決策樹算法是近年來被提及較多的一個算法,這主要得益於其算法的性能,以及該算法在各類數據挖掘以及機器學習比賽中的卓越表現,有很多人對GBDT算法進行了開源代碼的開發,比較火的是陳天奇的XGBoost和微軟的LightGBM 一、監督學習 1、 監督學習的主要任務 ...
轉自: https://www.zhihu.com/question/41354392 作者:wepon 鏈接:https://www.zhihu.com/question/41354 ...