這篇博客整理K均值聚類的內容,包括: 1、K均值聚類的原理; 2、初始類中心的選擇和類別數K的確定; 3、K均值聚類和EM算法、高斯混合模型的關系。 一、K均值聚類的原理 K均值聚類(K-means)是一種基於中心的聚類算法,通過迭代,將樣本分到K個類中,使得每個樣本與其所屬類 ...
python大戰機器學習 聚類和EM算法 注:本文中涉及到的公式一律省略 公式不好敲出來 ,若想了解公式的具體實現,請參考原著。 基本概念 聚類的思想: 將數據集划分為若干個不想交的子集 稱為一個簇cluster ,每個簇潛在地對應於某一個概念。但是每個簇所具有現實意義由使用者自己決定,聚類算法僅僅會進行划分。 聚類的作用: 可以作為一個單獨的過程,用於尋找數據的一個分布規律 作為分類的預處理過程 ...
2018-07-01 18:59 0 1622 推薦指數:
這篇博客整理K均值聚類的內容,包括: 1、K均值聚類的原理; 2、初始類中心的選擇和類別數K的確定; 3、K均值聚類和EM算法、高斯混合模型的關系。 一、K均值聚類的原理 K均值聚類(K-means)是一種基於中心的聚類算法,通過迭代,將樣本分到K個類中,使得每個樣本與其所屬類 ...
K-均值聚類算法 聚類是一種無監督的學習算法,它將相似的數據歸納到同一簇中。K-均值是因為它可以按照k個不同的簇來分類,並且不同的簇中心采用簇中所含的均值計算而成。 K-均值算法 算法思想 K-均值是把數據集按照k個簇分類,其中k是用戶給定的,其中每個簇是通過質心來計算簇的中心點 ...
一.k均值聚類算法 對於樣本集。"k均值"算法就是針對聚類划分最小化平方誤差: 其中是簇Ci的均值向量。從上述公式中可以看出,該公式刻畫了簇內樣本圍繞簇均值向量的緊密程度,E值越小簇內樣本的相似度越高。 工作流程: k-均值算法的描述如下: 接下 ...
...
K-means聚類算法 K-means聚類算法也是聚類算法中最簡單的一種了,但是里面包含的思想卻不一般。 聚類屬於無監督學習。在聚類問題中,給我們的訓練樣本是,每個,沒有了y。 K-means算法是將樣本聚類成k個簇(cluster),具體算法描述如下: 1、 隨機選取k個聚類質心點 ...
聚類分析就僅根據在數據中發現的描述對象及其關系的信息,將數據對象分組(簇)。其目標是,組內的對象相互之間是相似的,而不同組中的對象是不同的。組內相似性越大,組間差別越大,聚類就越好。 先介紹下聚類的不同類型,通常有以下幾種: (1)層次的與划分的:如果允許簇具有子簇,則我們得到一個 ...
1.K-均值聚類法的概述 之前在參加數學建模的過程中用到過這種聚類方法,但是當時只是簡單知道了在matlab中如何調用工具箱進行聚類,並不是特別清楚它的原理。最近因為在學模式識別,又重新接觸了這種聚類算法,所以便仔細地研究了一下它的原理。弄懂了之后就自己手工用matlab編程實現 ...
顧名思義,k均值聚類是一種對數據進行聚類的技術,即將數據分割成指定數量的幾個類,揭示數據的內在性質及規律。我們知道,在機器學習中,有三種不同的學習模式:監督學習、無監督學習和強化學習: 監督學習,也稱為有導師學習,網絡輸入包括數據和相應的輸出標簽信息。例如,在 MNIST 數據集中,手寫 ...