K-均值聚類算法
聚類是一種無監督的學習算法,它將相似的數據歸納到同一簇中。K-均值是因為它可以按照k個不同的簇來分類,並且不同的簇中心采用簇中所含的均值計算而成。
K-均值算法
算法思想
K-均值是把數據集按照k個簇分類,其中k是用戶給定的,其中每個簇是通過質心來計算簇的中心點。
主要步驟:
- 隨機確定k個初始點作為質心
- 對數據集中的每個數據點找到距離最近的簇
- 對於每一個簇,計算簇中所有點的均值並將均值作為質心
- 重復步驟2,直到任意一個點的簇分配結果不變
具體實現
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
def loadDataSet(fileName): #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) #map all elements to float()
dataMat.append(fltLine)
return dataMat
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
print ptsInClust
print mean(ptsInClust, axis=0)
return
return centroids, clusterAssment
def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect=[0.1,0.1,0.8,0.8]
scatterMarkers=['s', 'o', '^', '8', 'p', \
'd', 'v', 'h', '>', '<']
axprops = dict(xticks=[], yticks=[])
ax0=fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1=fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
plt.show()
結果
算法收斂
設目標函數為
$$J(c, \mu) = \sum _{i=1}^m (x_i - \mu_{c_{(i)}})^2$$
Kmeans算法是將J調整到最小,每次調整質心,J值也會減小,同時c和$\mu$也會收斂。由於該函數是一個非凸函數,所以不能保證得到全局最優,智能確保局部最優解。
二分K均值算法
為了克服K均值算法收斂於局部最小值的問題,提出了二分K均值算法。
算法思想
該算法首先將所有點作為一個簇,然后將該簇一分為2,之后選擇其中一個簇繼續進行划分,划分規則是按照最大化SSE(目標函數)的值。
主要步驟:
- 將所有點看成一個簇
- 計算每一個簇的總誤差
- 在給定的簇上進行K均值聚類,計算將簇一分為二的總誤差
- 選擇使得誤差最小的那個簇進行再次划分
- 重復步驟2,直到簇的個數滿足要求
具體實現
def biKMeans(dataSet, k, distMeans=distEclud):
m, n = shape(dataSet)
clusterAssment = mat(zeros((m, 2))) # init all data for index 0
centroid = mean(dataSet, axis=0).tolist()
centList = [centroid]
for i in range(m):
clusterAssment[i, 1] = distMeans(mat(centroid), dataSet[i, :]) ** 2
while len(centList) < k:
lowestSSE = inf
for i in range(len(centList)):
cluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :] # get the clust data of i
centroidMat, splitCluster = kMeans(cluster, 2, distMeans)
sseSplit = sum(splitCluster[:, 1]) #all sse
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1]) # error sse
#print sseSplit, sseNotSplit
if sseSplit + sseNotSplit < lowestSSE:
bestCentToSplit = i
bestNewCent = centroidMat
bestClust = splitCluster.copy()
lowerSEE = sseSplit + sseNotSplit
print bestClust
bestClust[nonzero(bestClust[:, 0].A == 1)[0], 0] = len(centList)
bestClust[nonzero(bestClust[:, 0].A == 0)[0], 0] = bestCentToSplit
print bestClust
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClust)
centList[bestCentToSplit] = bestNewCent[0, :].tolist()[0]
centList.append(bestNewCent[1, :].tolist()[0])
print clusterAssment
clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClust
print clusterAssment
return mat(centList), clusterAssment