作者:szx_spark 1. Padding 在卷積操作中,過濾器(又稱核)的大小通常為奇數,如3x3,5x5。這樣的好處有兩點: 在特征圖(二維卷積)中就會存在一個中心像素點。有一個中心像素點會十分方便,便於指出過濾器的位置。 在沒有padding的情況下,經過卷積操作 ...
作者:szx spark . 經典網絡 LeNet AlexNet VGG Ng介紹了上述三個在計算機視覺中的經典網絡。網絡深度逐漸增加,訓練的參數數量也驟增。AlexNet大約 萬參數,VGG大約上億參數。 從中我們可以學習到: 隨着網絡深度增加,模型的效果能夠提升。 另外,VGG網絡雖然很深,但是其結構比較規整。每經過一次池化層 過濾器大小為 ,步長為 ,圖像的長度和寬度折半 每經過一次卷積層 ...
2018-02-11 15:10 0 5453 推薦指數:
作者:szx_spark 1. Padding 在卷積操作中,過濾器(又稱核)的大小通常為奇數,如3x3,5x5。這樣的好處有兩點: 在特征圖(二維卷積)中就會存在一個中心像素點。有一個中心像素點會十分方便,便於指出過濾器的位置。 在沒有padding的情況下,經過卷積操作 ...
1. 導讀 本節內容介紹普通RNN的弊端,從而引入各種變體RNN,主要講述GRU與LSTM的工作原理。 事先聲明,本人采用ng在課堂上所使用的符號系統,與某些學術文獻上的命名有所不同,不過核心思想都 ...
RNN 首先思考這樣一個問題:在處理序列學習問題時,為什么不使用標准的神經網絡(建立多個隱藏層得到最終的輸出)解決,而是提出了RNN這一新概念? 標准神經網絡如下圖所示: 標准神經網絡在解決序列問題時,存在兩個問題: 難以解決每個訓練樣例子輸入輸出長度不同的情況,因為序列的長度代表 ...
以下為在Coursera上吳恩達老師的DeepLearning.ai課程項目中,第一部分《神經網絡和深度學習》第二周課程部分關鍵點的筆記。筆記並不包含全部小視頻課程的記錄,如需學習筆記中舍棄的內容請至 Coursera 或者 網易雲課堂。同時在閱讀以下筆記之前,強烈建議先學習吳恩達老師的視頻課程 ...
一、為什么要進行實例探究? 通過他人的實例可以更好的理解如何構建卷積神經網絡,本周課程主要會介紹如下網絡 LeNet-5 AlexNet VGG ResNet (有152層) Inception 二、經典網絡 1.LeNet-5 該網絡主要針對灰度圖像訓練 ...
吳恩達深度學習課程的課堂筆記以及課后作業 代碼下載:https://github.com/douzujun/Deep-Learning-Coursera 吳恩達推薦筆記:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 課程1 - 神經網絡 ...
介紹 DeepLearning課程總共五大章節,該系列筆記將按照課程安排進行記錄。 另外第一章的前兩周的課程在之前的Andrew Ng機器學習課程筆記(博客園)&Andrew Ng機器學習課程筆記(CSDN)系列筆記中都有提到,所以這里不再贅述。 1、神經網絡概要 ...
的rnn計算,拉通來的rnn計算 在看本文前,可以先看看這篇文章回憶一下: 吳恩達deepL ...