原文:【Machine Learning】監督學習、非監督學習及強化學習對比

Supervised Learning Unsupervised Learning Reinforced Learning Goal: How to apply these methods How to evaluate each methods What is Machine Learning .computational statistics .computational artifacts ...

2018-01-08 14:33 0 1253 推薦指數:

查看詳情

Machine Learning監督學習監督學習

斯坦福大學的Machine Learning課程(講師是Andrew Ng)公開課是學習機器學習的“聖經”,以下內容是聽課筆記。 一、何謂機器學習 Machine Learning is field of study that gives computers the ability ...

Wed May 10 19:15:00 CST 2017 0 5989
機器學習分類之監督學習、無監督學習強化學習

  監督學習是從標注數據中學習模型的機器學習問題,是統計學習或機器學習的重要組成部分。赫爾伯特·西蒙(Herbert A. Simon)曾對“學習”給出以下定義:“如果一個系統能夠通過執行某個過程改進它的性能,這就是學習。”按照這一觀點,統計學習就是計算機系統通過運用數據及統計方法提高系統性能 ...

Mon Jul 27 18:14:00 CST 2020 1 888
對比監督學習

Contrastive self-supervised learning techniques are a promising class of methods that build representations by learning to encode what makes two ...

Thu Jan 30 23:52:00 CST 2020 0 5290
什么是監督學習監督學習強化學習

機器學習按照學習方式的不同,分為很多的類型,主要的類型分為 監督學習 監督學習 強化學習監督學習 什么是監督學習? 利用一組已知類別的樣本調整分類器的參數,使其達到所要求性能的過程,也稱為監督訓練。 正如下圖中給出了好多鴨子的特征那樣,指示 ...

Sat Dec 22 05:25:00 CST 2018 2 2251
監督學習、無監督學習以及強化學習

定義 有監督學習是機器學習任務的一種。它從有標記的訓練數據中推導出預測函數。有標記的訓練數據是指每個訓練實例都包括輸入和期望的輸出。一句話:給定數據,預測標簽。 無監督學習是機器學習任務的一種。它從無標記的訓練數據中推斷結論。最典型的無監督學習就是聚類分析,它可以在探索性數據分析 ...

Wed Mar 23 19:06:00 CST 2022 0 855
監督學習監督學習的區別

以下是摘抄自知乎上對監督學習監督學習的總結,覺得寫得很形象,於是記下: 這個問題可以回答得很簡單:是否有監督(supervised),就看輸入數據是否有標簽(label)。輸入數據有標簽,則為有監督學習,沒標簽則為無監督學習首 先看什么是學習learning)?一個成語就可概括:舉一反三 ...

Tue Jul 07 22:29:00 CST 2015 0 10659
監督學習監督學習的區別

在機器學習中,監督學習監督學習算法是非常重要的,但是二者應該如何區分開來呢? 要向對二者進行區分,首先就要對訓練的數據進行檢查,看一下訓練數據中是否有標簽,這是二者最根本的區別。監督學習的數據既有特征又有標簽,而非監督學習的數據中只有特征而沒有標簽。 監督學習是通過訓練讓機器自己找到特征 ...

Fri Jun 22 19:22:00 CST 2018 0 5892
監督學習監督學習的理解

監督學習:通過人為地輸入帶有標簽的訓練數據集,使計算機訓練得到一個較為合適的模型,對未知標簽的數據進行預測。常見的監督學習算法:回歸和分類。 1.回歸(Regression):通常有兩個及以上變量,數據一般是連續的,通過訓練集變量之間的關系得到一條模擬訓練樣本的曲線,對未知數據的因變量進行預測 ...

Sun Dec 15 06:16:00 CST 2019 4 779
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM