【Machine Learning】監督學習、非監督學習及強化學習對比


  • Supervised Learning
  • Unsupervised Learning
  • Reinforced Learning

Goal:

  • How to apply these methods
  • How to evaluate each methods

What is Machine Learning?

1.computational statistics
2.computational artifacts(人工制品) that learn over time based on experience

一、分類

  • Supervised Learning
  • Unsupervised Learning
  • Reinforcement Learning

1.1 Supervised learning——Approximation

  • 一句話實質:About Function Approximation(函數逼近),or Approximate function induction(近似函數歸納)
  • feed with labeled examples,comeing up with some function that generalizes beyond(泛化函數)
  • 有反饋

1.2 Unsupervised learning——Description

  • 一句話實質:About Compact(簡潔的) Description
  • 無監督學習是密切相關的統計數據密度估計的問題。
  • 無反饋
  • Unsupervised learning could be helpful in the supervised Setting

1.3 Reinforcement learning (增強學習)

  • 一句話實質:Learning from delayed reward (通過延遲性獎勵進行學習)
  • 執行許多步之后才知道反饋,就像下棋(對比監督學習的立即反饋)

二、歸納法(induction)與演繹法(deduction)

  • Generalize 泛化
  • 了解機器學習發展史
  • 機器學習算法與歸納而不是演繹有關
  • Inductive bias 歸納偏差

歸納:從示例到一般規律(從一個示例得出更普遍的規律)

演繹:從規則到實例,a general rule to specific instances,basically like reasoning(推理)

三、三種機器學習的比較

表述成:優化問題

Supervised Learning —— labels data well(to find a funtion to score that) (標記數據)
Unsupervised Learning —— cluster scores well(最好的分類方法)
Reinforcement learning —— behavior scores well (最好的表現)

3.2 Data

Data is king in machine learning.

轉變:以算法為中心——》以數據為中心

  • Believe in your data!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM