內容引用其它文章:https://my.oschina.net/u/876354/blog/1927351 目標檢測是AI的一項重要應用,通過目標檢測模型能在圖像中 ...
經歷了無數坑,終於在電腦上成功運行了ssd算法。 主要參考的博客:http: m.blog.csdn.net yexiaogu article details http: www.cnblogs.com zlslch p .html 下面記錄下我的流程。 .從https: github.com balancap SSD Tensorflow上下載源碼並解壓 .下載模型https: drive.go ...
2017-10-26 14:39 1 8575 推薦指數:
內容引用其它文章:https://my.oschina.net/u/876354/blog/1927351 目標檢測是AI的一項重要應用,通過目標檢測模型能在圖像中 ...
Fork版本項目地址:SSD 參考自集智專欄 一、SSD基礎 在分類器基礎之上想要識別物體,實質就是 用分類器掃描整張圖像,定位特征位置 。這里的關鍵就是用什么算法掃描,比如可以將圖片分成若干網格,用分類器一個格子、一個格子掃描,這種方法有幾個問題: 問題1 : 目標正好 ...
Fork版本項目地址:SSD 一、損失函數介紹 SSD損失函數分為兩個部分:對應搜索框的位置loss(loc)和類別置信度loss(conf)。(搜索框指網絡生成的網格) 詳細的說明如下: i指代搜索框序號,j指代真實框序號,p指代類別序號,p=0表示背景, 中取1表示此時第i個搜索框 ...
Fork版本項目地址:SSD 一、輸入標簽生成 在數據預處理之后,圖片、類別、真實框格式較為原始,不能夠直接作為損失函數的輸入標簽(ssd向前網絡只需要圖像就行,這里的處理主要需要滿足loss的計算),對於一張圖片(三維CHW)我們需要如下格式的數據作為損失函數標簽: gclasse ...
Fork版本項目地址:SSD 作者使用了分布式訓練的寫法,這使得訓練部分代碼異常臃腫,我給出了部分注釋。我對於多機分布式並不很熟,而且不是重點,所以不過多介紹,簡單的給出一點訓練中作者的優化手段,包含優化器選擇之類的。 一、滑動平均 # =================================================================== ...
Fork版本項目地址:SSD 上一節中我們定義了vgg_300的網絡結構,實際使用中還需要匹配SSD另一關鍵組件:被選取特征層的搜索網格。在項目中,vgg_300網絡和網格生成都被統一進一個class中,我們從class SSDNet開始談起。 一、初始化class SSDNet 這是 ...
Fork版本項目地址:SSD 一、TFR數據讀取 創建slim.dataset.Dataset對象 在train_ssd_network.py獲取數據操作如下,首先需要slim.dataset.Dataset對象 # Select the dataset. # 'imagenet ...
一、論文介紹 讀論文系列:Object Detection ECCV2016 SSD 一句話概括:SSD就是關於類別的多尺度RPN網絡 基本思路: 基礎網絡后接多層feature map 多層feature map分別對應不同尺度的固定anchor 回歸所有anchor對應 ...