目錄 RNN 為什么會出現RNN RNN模型架構 多輸入單輸出 單輸入多輸出 多輸入多輸出 梯度消失和梯度爆炸 LSTM 為什么會出現LSTM呢? LSTM模型結構 ...
摘自:http: www.voidcn.com article p ntafyhkn zc.html 二 LSTM模型 .長短期記憶模型 long short term memory 是一種特殊的RNN模型,是為了解決RNN模型梯度彌散的問題而提出的 在傳統的RNN中,訓練算法使用的是BPTT,當時間比較長時,需要回傳的殘差會指數下降,導致網絡權重更新緩慢,無法體現出RNN的長期記憶的效果,因此需 ...
2017-10-23 09:47 0 1768 推薦指數:
目錄 RNN 為什么會出現RNN RNN模型架構 多輸入單輸出 單輸入多輸出 多輸入多輸出 梯度消失和梯度爆炸 LSTM 為什么會出現LSTM呢? LSTM模型結構 ...
摘自:https://zybuluo.com/hanbingtao/note/581764 寫得非常好 見原文 長短時記憶網絡的思路比較簡單。原始RNN的隱藏層只有一個狀態,即h,它對於短期的輸入非 ...
說到自然語言,我就會想到朴素貝葉斯,貝葉斯核心就是條件概率,而且大多數自然語言處理的思想也就是條件概率。 所以我用預測一個句子出現的概率為例,闡述一下自然語言處理的思想。 統計語言模型-概率 句子,就是單詞的序列,句子出現的概率就是這個序列出現的概率 可以想象上面這個式子計算量 ...
來源:https://github.com/jiangxinyang227/NLP-Project/text_classifier base.py ...
1. 語言模型 2. RNN LSTM語言模型 (梯度權重) (1)one to one : 圖像分類 (2)one to many:圖片描述 (3)many to one:文本情感分析、分類 (4)many to many(N ...
1 大綱概述 文本分類這個系列將會有十篇左右,包括基於word2vec預訓練的文本分類,與及基於最新的預訓練模型(ELMo,BERT等)的文本分類。總共有以下系列: word2vec預訓練詞向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
序列數據的處理,從語言模型 N-gram 模型說起,然后着重談談 RNN,並通過 RNN 的變種 LSTM 和 GRU 來實戰文本分類。 語言模型 N-gram 模型 一般自然語言處理的傳統方法是將句子處理為一個詞袋模型(Bag-of-Words,BoW),而不考慮每個詞的順序,比如用朴素貝葉 ...
基於LSTM語言模型的文本生成 目錄 基於LSTM語言模型的文本生成 1. 文本生成 1.1 基於語言模型的文本生成 1.2 使用深度學習方法的文本生成 1.3 Sampling問題 ...