目錄 PCA 1. PCA最大可分性的思想 2. 基變換(線性變換) 3. 方差 4. 協方差 5. 協方差矩陣 6. 協方差矩陣對角化 7. PCA算法流程 8. PCA算法總結 ...
一,引言 降維是對數據高維度特征的一種預處理方法。降維是將高維度的數據保留下最重要的一些特征,去除噪聲和不重要的特征,從而實現提升數據處理速度的目的。在實際的生產和應用中,降維在一定的信息損失范圍內,可以為我們節省大量的時間和成本。降維也成為了應用非常廣泛的數據預處理方法。 降維具有如下一些優點: 使得數據集更易使用 降低算法的計算開銷 去除噪聲 使得結果容易理解 PCA principal Co ...
2017-06-25 11:37 6 75836 推薦指數:
目錄 PCA 1. PCA最大可分性的思想 2. 基變換(線性變換) 3. 方差 4. 協方差 5. 協方差矩陣 6. 協方差矩陣對角化 7. PCA算法流程 8. PCA算法總結 ...
本篇文章不涉及理論推理。如果你想知道為什么通過協方差矩陣算出特征向量和特征值,然后對特征值進行排序后找到對應的特征向量與原矩陣X相乘即可得到降維后的X,可以去看看這篇文章: http://bl ...
第13章 利用 PCA 來簡化數據 降維技術 場景 我們正通過電視觀看體育比賽,在電視的顯示器上有一個球。 顯示器大概包含了100萬像素點,而球則可能是由較少的像素點組成,例如說一千個像素點。 人們實時的將顯示器上的百萬像素轉換成為一個三維圖像,該圖像就給出 ...
第13章 利用 PCA 來簡化數據 降維技術 場景 我們正通過電視觀看體育比賽,在電視的顯示器上有一個球。 顯示器大概包含了100萬像素點,而球則可能是由較少的像素點組成,例如說一千個像素點。 人們實時的將顯示器上的百萬像素轉換成為一個三維圖像,該圖像就給出 ...
之間的相關性,並發現一些潛在的特征變量。 PCA的目的: PCA是一種在盡可能減少信息損失的情 ...
; 降維:X_reduction = pca.transform ( X ) 升維:X_ ...
一、LDA算法 基本思想:LDA是一種監督學習的降維技術,也就是說它的數據集的每個樣本是有類別輸出的。這點和PCA不同。PCA是不考慮樣本類別輸出的無監督降維技術。 我們要將數據在低維度上進行投影,投影后希望每一種類別數據的投影點盡可能的接近,而不同類別的數據的類別中心之間的距離盡可 ...
背景與原理: PCA(主成分分析)是將一個數據的特征數量減少的同時盡可能保留最多信息的方法。所謂降維,就是在說對於一個$n$維數據集,其可以看做一個$n$維空間中的點集(或者向量集),而我們要把這個向量集投影到一個$k<n$維空間中,這樣當然會導致信息損失,但是如果這個$k$維空間的基底 ...