原文:初識神經網絡NeuralNetworks

.神經網絡的起源 在傳統的編程方法中,我們通常會告訴計算機該做什么,並且將一個大問題分解為許多小的 精確的 計算機可以輕松執行的任務。相反,在神經網絡中,我們不告訴計算機如何解決問題,而是讓計算機從觀測數據中學習,自己找出解決方法。 自動從數據中學習聽起來不錯,然而, 年之前我們都仍然不清楚如何訓練神經網絡使其優於大多數傳統方法,除了一些有專門解決方法的問題。在 年,深度神經網絡出現了,這些技術 ...

2017-06-12 16:06 0 1366 推薦指數:

查看詳情

神經網絡與BP神經網絡

一、神經神經元模型是一個包含輸入,輸出與計算功能的模型。(多個輸入對應一個輸出) 一個神經網絡的訓練算法就是讓權重(通常用w表示)的值調整到最佳,以使得整個網絡的預測效果最好。 事實上,在神經網絡的每個層次中,除了輸出層以外,都會含有這樣一個偏置單元。這些節點是默認存在的。它本質上 ...

Sun Dec 31 23:31:00 CST 2017 0 1533
BP神經網絡 [神經網絡 2]

本文來自於 [1] BP神經網絡 和 [2] Wikipedia: Backpropagation,感謝原文作者! 1- M-P模型   按照生物神經元,我們建立M-P模型。為了使得建模更加簡單,以便於進行形式化表達,我們忽略時間整合作用、不應期等復雜因素,並把 ...

Fri May 22 22:52:00 CST 2015 0 2157
神經網絡:卷積神經網絡

一、前言 這篇卷積神經網絡是前面介紹的多層神經網絡的進一步深入,它將深度學習的思想引入到了神經網絡當中,通過卷積運算來由淺入深的提取圖像的不同層次的特征,而利用神經網絡的訓練過程讓整個網絡自動調節卷積核的參數,從而無監督的產生了最適合的分類特征。這個概括可能有點抽象,我盡量在下面描述細致一些 ...

Mon Apr 07 19:24:00 CST 2014 41 36475
神經網絡及其訓練

在前面的博客人工神經網絡入門和訓練深度神經網絡,也介紹了與本文類似的內容。前面的兩篇博客側重的是如何使用TensorFlow實現,而本文側重相關數學公式及其推導。 1 神經網絡基礎 1.1 單個神經元 一個神經元就是一個計算單元,傳入$n$個輸入,產生一個輸出,再應用於激活函數。記$n$維 ...

Fri Jun 08 06:05:00 CST 2018 0 11915
卷積神經網絡

​卷積神經網絡這個詞,應該在你開始學習人工智能不久后就聽過了,那究竟什么叫卷積神經網絡,今天我們就聊一聊這個問題。 不用思考,左右兩張圖就是兩只可愛的小狗狗,但是兩張圖中小狗狗所處的位置是不同的,左側圖片小狗在圖片的左側,右側圖片小狗在圖片的右下方,這樣如果去用圖片特征識別出來的結果,兩張圖 ...

Thu Jan 23 05:43:00 CST 2020 0 231
神經網絡 LSTM

神經網絡概述 這部分內容已經有很多人講的很清楚了,我就不再重復了,只是在這里簡單梳理一下詳細可見http://m.blog.csdn.net/article/details?id=7681000 對神經網絡的發展歷史感興趣的還可以看下http ...

Sun May 01 03:16:00 CST 2016 0 2431
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM