特征值與特征向量的幾何意義 矩陣的乘法是什么,別只告訴我只是“前一個矩陣的行乘以后一個矩陣的列”,還會一點的可能還會說“前一個矩陣的列數等於后一個矩陣的行數才能相乘”,然而,這里卻會和你說——那都是表象。 矩陣乘法真正的含義是變換,我們學《線性代數》一開始就學行變換列變換,那才是線代 ...
矩陣基礎 矩陣是一個表示二維空間的數組,矩陣可以看做是一個變換。在線性代數中,矩陣可以把一個向量變換到另一個位置,或者說從一個坐標系變換到另一個坐標系。矩陣的 基 ,實際就是變換時所用的坐標系。而所謂的相似矩陣,就是同樣的變換,只不過使用了不同的坐標系。線性代數中的相似矩陣實際上就是要使這些相似的矩陣有一個好看的外表,而不改變其變換的功用。 矩陣的特征方程式 AX X 方程左邊就是把向量x變到另 ...
2017-03-15 00:51 0 8173 推薦指數:
特征值與特征向量的幾何意義 矩陣的乘法是什么,別只告訴我只是“前一個矩陣的行乘以后一個矩陣的列”,還會一點的可能還會說“前一個矩陣的列數等於后一個矩陣的行數才能相乘”,然而,這里卻會和你說——那都是表象。 矩陣乘法真正的含義是變換,我們學《線性代數》一開始就學行變換列變換,那才是線代 ...
最近在做聚類的時候用到了主成分分析PCA技術,里面涉及一些關於矩陣特征值和特征向量的內容,在網上找到一篇對特征向量及其物理意義說明較好的文章,整理下來,分享一下。 一、矩陣基礎[1]: 矩陣是一個表示二維空間的數組,矩陣可以看做是一個變換。在線性代數中,矩陣可以把一個向量變換到另一 ...
特征值特征向量在機器視覺中很重要,很基礎,學了這么多年數學一直不理解特征值特征向量到底表達的物理意義是什么,在人工智能領域到底怎么用他們處理數據,當然筆者並不打算把文章寫成純數學文章,而是希望用直觀和易懂的方式進行解釋。 在數學上,特別是線性代數中,對於一個給定的線性變換 ...
矩陣的特征值和特征向量 定義 對於\(n\)階方陣\(A\),若存在非零列向量\(x\)和數\(\lambda\)滿足\(Ax=\lambda x\),則稱\(\lambda\)和\(x\)為一組對應的特征值和特征向量 在確定了特征值之后,可以得到對應\(x\)的無窮多個解 求解特征值 ...
特征向量是一個向量,當在它上面應用線性變換時其方向保持不變。考慮下面的圖像,其中三個向量都被展示出來。綠色正方形僅說明施加到這三個向量上的線性變換。 在這種情況下變換僅僅是水平方向乘以因子2和垂直方向乘以因子0.5,使得變換矩陣A定義 ...
大學學習線性代數的時候,特征值(eigenvalue)和特征向量(eigenvector)一直不甚理解,盡管課本上說特征值和特征向量在工程技術領域有着廣泛的應用,但是除了知道怎么求解特征值和特征向量之外,對其包含的現實意義知之甚少。畢業五六年后,學習機器學習,用到PCA在進行主成分分析過程中,需要 ...
...