在線最優化求解(Online Optimization)之五:FTRL 在上一篇博文中中我們從原理上定性比較了L1-FOBOS和L1-RDA在稀疏性上的表現。有實驗證明,L1-FOBOS這一類基於梯度下降的方法有比較高的精度,但是L1-RDA卻能在損失一定精度的情況下產生更好的稀疏性 ...
. 背景介紹 最優化求解問題可能是我們在工作中遇到的最多的一類問題了:從已有的數據中提煉出最適合的模型參數,從而對未知的數據進行預測。當我們面對高維高數據量的場景時,常見的批量處理的方式已經顯得力不從心,需要有在線處理的方法來解決此類問題。 在CTR預估中,經常會用到經典的邏輯回歸 LR ,而對LR的各維度參數進行估計的時候會用到最優化算法,常見的比如梯度下降 Gradient Descent ...
2017-02-12 15:47 0 1812 推薦指數:
在線最優化求解(Online Optimization)之五:FTRL 在上一篇博文中中我們從原理上定性比較了L1-FOBOS和L1-RDA在稀疏性上的表現。有實驗證明,L1-FOBOS這一類基於梯度下降的方法有比較高的精度,但是L1-RDA卻能在損失一定精度的情況下產生更好的稀疏性 ...
在線最優化求解(Online Optimization)之三:FOBOS FOBOS (Forward-Backward Splitting)是由John Duchi和Yoram Singer提出的[11]。從全稱上來看,該方法應該叫FOBAS,但是由於一開始作者管這種方法叫FOLOS ...
最自然的學習規則是使用任何在過去回合中損失最小的向量。 這與Consistent算法的精神相同,它在在線凸優化中通常被稱為Follow-The-Leader,最小化累積損失。 對於任何t: ...
開啟一個在線學習和在線凸優化框架專題學習: 1.首先介紹在線學習的相關概念 在線學習是在一系列連續的回合(rounds)中進行的; 在回合,學習機(learner)被給一個question:(一 ...
緊接上文,我們講述在線分類問題 令,為0-1損失,我們做出如下的簡化假設: 學習者的目標是相對於hypotheses set: H具有low regret,其中H中的每個函數是從到{0,1} ...
近年來,許多有效的在線學習算法的設計受到凸優化工具的影響。 此外,據觀察,大多數先前提出的有效算法可以基於以下優雅模型聯合分析: 凸集的定義: 一個向量 的Regret ...
一些在線預測問題可以轉化到在線凸優化框架中。下面介紹兩種凸化技術: 一些在線預測問題似乎不適合在線凸優化框架。例如,在線分類問題中,預測域(predictions domain)或損失函數不 ...
FTRL(Follow The Regularized Leader)是一種優化方法,就如同SGD(Stochastic Gradient Descent)一樣。這里直接給出用FTRL優化LR(Logistic Regression)的步驟: 其中$p_t=\sigma(X_t\cdot w ...