一、BP算法的意義 對於初學者來說,了解了一個算法的重要意義,往往會引起他對算法本身的重視。BP(Back Propagation,后向傳播)算法,具有非凡的歷史意義和重大的現實意義。 1.1、歷史意義 1969年,作為人工神經網絡創始人的明斯基(Marrin M ...
BP Back Propagation 網絡是 年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播算法訓練的多層前饋網絡,是目前應用最廣泛的神經網絡模型之一。BP網絡能學習和存貯大量的輸入 輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。 一個神經網絡的結構示意圖如下所示。 BP神經網絡模型拓撲結構包括輸入層 input 隱層 hide layer 和輸 ...
2017-02-06 14:56 0 2296 推薦指數:
一、BP算法的意義 對於初學者來說,了解了一個算法的重要意義,往往會引起他對算法本身的重視。BP(Back Propagation,后向傳播)算法,具有非凡的歷史意義和重大的現實意義。 1.1、歷史意義 1969年,作為人工神經網絡創始人的明斯基(Marrin M ...
BP算法: 1.是一種有監督學習算法,常被用來訓練多層感知機。 2.要求每個人工神經元(即節點)所使用的激勵函數必須可微。 (激勵函數:單個神經元的輸入與輸出之間的函數關系叫做激勵函數。) (假如不使用激勵函數,神經網絡中的每層都只是做簡單的線性變換,多層輸入疊加后 ...
BP 算法推導過程 一.FP過程(前向-計算預測值) 定義sigmoid激活函數 輸入層值和 標簽結果 初始化 w,b 的值 計算隱層的結果 \[ h1 = Sigmod( Net_{h1}) =Sigmod(w1*l1+ w2*l2+b1 ...
博客園不支持數學公式orz,我也很絕望啊! ...
)(1974年,哈佛博士論文) (3)BP算法訓練的神經網絡:信號正向傳播和誤差反向傳播(修正權值) ...
一、BP神經網絡的概念 BP神經網絡是一種多層的前饋神經網絡,其基本的特點是:信號是前向傳播的,而誤差是反向傳播的。詳細來說。對於例如以下的僅僅含一個隱層的神經網絡模型: watermark/2/text ...
前言:這只是我的一個學習筆記,里邊肯定有不少錯誤,還希望有大神能幫幫找找,由於是從小白的視角來看問題的,所以對於初學者或多或少會有點幫助吧。 1:人工全連接神經網絡和BP算法 <1>:人工神經網絡結構與人工神經網絡可以完美分割任意數據的原理: 本節圖片來源於 ...
本文是學習B站老哥數學建模課程之后的一點筆記。 BP(back propagation)算法神經網絡的簡單原理 BP神經網絡是一種采用BP學習算法(按照誤差逆向傳播訓練)的多層前饋神經網絡,是應用最廣泛的神經網絡。 神經網絡基本結構如下: 共分為三層,可以理解為一組輸入 ...