深度神經網絡(DNN) 深度神經網絡(Deep Neural Networks, 以下簡稱DNN)是深度學習的基礎,而要理解DNN,首先我們要理解DNN模型,下面我們就對DNN的模型與前向傳播算法做一個總結。 1. 從感知機到神經網絡 在感知機原理小結中,我們介紹過感知機的模型,它是 ...
神經網絡簡史 神經網絡技術起源於上世紀五 六十年代,當時叫感知機 perceptron ,擁有輸入層 輸出層和一個隱含層。輸入的特征向量通過隱含層變換達到輸出層,在輸出層得到分類結果。但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力 比如最為典型的 異或 操作 。 隨着數學的發展,這個缺點直到上世紀八十年代才被Rumelhart Williams ...
2016-09-04 18:01 0 27136 推薦指數:
深度神經網絡(DNN) 深度神經網絡(Deep Neural Networks, 以下簡稱DNN)是深度學習的基礎,而要理解DNN,首先我們要理解DNN模型,下面我們就對DNN的模型與前向傳播算法做一個總結。 1. 從感知機到神經網絡 在感知機原理小結中,我們介紹過感知機的模型,它是 ...
建議:可以查看吳恩達的深度學習視頻,里面對這幾個算法有詳細的講解。 一、指數加權平均 說明:在了解新的算法之前需要先了解指數加權平均,這個是Momentum、RMSprop、Ad ...
全連接神經網絡(DNN)是最朴素的神經網絡,它的網絡參數最多,計算量最大。 網絡結構 DNN的結構不固定,一般神經網絡包括輸入層、隱藏層和輸出層,一個DNN結構只有一個輸入層,一個輸出層,輸入層和輸出層之間的都是隱藏層。每一層神經網絡有若干神經元(下圖中藍色圓圈),層與層之間神經元相互連接 ...
本文轉載修改自:知乎-科言君 感知機(perceptron) 神經網絡技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特征向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt ...
CNN(卷積神經網絡)、RNN(循環神經網絡)、DNN(深度神經網絡)的內部網絡結構有什么區別? DNN以神經網絡為載體,重在深度,可以說是一個統稱。RNN,回歸型網絡,用於序列數據,並且有了一定的記憶效應,輔之以lstm。CNN應該側重空間映射,圖像數據尤為貼合此場景。 DNN以神經網絡 ...
Keras介紹 Keras是一個開源的高層神經網絡API,由純Python編寫而成,其后端可以基於Tensorflow、Theano、MXNet以及CNTK。Keras 為支持快速實驗而生,能夠把你的idea迅速轉換為結果。Keras適用的Python版本是:Python 2.7-3.6 ...
線性模型通過特征間的現行組合來表達“結果-特征集合”之間的對應關系。由於線性模型的表達能力有限,在實踐中,只能通過增加“特征計算”的復雜度來優化模型。比如,在廣告CTR預估應用中,除了“標題長度、描述 ...
和普通的機器學習算法一樣,DNN也會遇到過擬合的問題,需要考慮泛化,這里我們就對DNN的正則化方法做一個總結。 1. DNN的L1&L2正則化 想到正則化,我們首先想到的就是L1正則化和L2正則化。L1正則化和L2正則化原理類似,這里重點講述DNN的L2正則化 ...