來源和參考,參見以下鏈接等相關網站: http://blog.csdn.net/zouxy09/article/details/8775360 http://blog.csdn.net/zouxy ...
借鑒前人的文章鏈接 http: blog.csdn.net zouxy article details http: www.gene seq.com bbs thread .html http: ibillxia.github.io blog convex optimization overview UFLDL教程 http: ufldl.stanford.edu wiki index.php E ...
2016-07-13 11:10 0 6174 推薦指數:
來源和參考,參見以下鏈接等相關網站: http://blog.csdn.net/zouxy09/article/details/8775360 http://blog.csdn.net/zouxy ...
參考前人的鏈接 http://blog.csdn.net/zouxy09/article/details/8775524 Deep Learning的常用模型或者方法 1、AutoEncoder自動編碼器 Deep Learning最簡單的一種方法是利用 ...
原文地址:http://blog.csdn.net/hjimce/article/details/50413257 作者:hjimce 一、相關工作 本來今天是要搞《Maxout Net ...
一、池化層的作用: 1、抑制噪聲,降低信息冗余度 2、提升模型的尺度不變性和旋轉不變性 3、降低模型計算量 4、防止過擬合 二、池化算法的操作方式 1、平均池化:保留背景信息,突出背景信息 2、最大 ...
轉自:http://www.cnblogs.com/caocan702/p/5666175.html 借鑒前人的文章鏈接 http://blog.csdn.net/zouxy09/artic ...
稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 稀疏自編碼器Ⅰ這部分先簡單講述神經網絡的部分,它和稀疏 ...
稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 自編碼算法與稀疏性 已經討論了神經網絡在有 ...
UFLDL深度學習筆記 (一)基本知識與稀疏自編碼 前言 近來正在系統研究一下深度學習,作為新入門者,為了更好地理解、交流,准備把學習過程總結記錄下來。最開始的規划是先學習理論推導;然后學習一兩種開源框架;第三是進階調優、加速技巧。越往后越要帶着工作中的實際問題去做,而不能是空中樓閣式 ...