深度學習淺層理解(一)


來源和參考,參見以下鏈接等相關網站:

http://blog.csdn.net/zouxy09/article/details/8775360

http://blog.csdn.net/zouxy09/article/details/8775488

http://blog.csdn.net/zouxy09/article/details/8775518

       1958 年,DavidHubel 和Torsten Wiesel 在 JohnHopkins University,研究瞳孔區域與大腦皮層神經元的對應關系。他們在貓的后腦頭骨上,開了一個3 毫米的小洞,向洞里插入電極,測量神經元的活躍程度。目的是去證明一個猜測。位於后腦皮層的不同視覺神經元,與瞳孔所受刺激之間,存在某種對應關系。這個發現激發了人們對於神經系統的進一步思考。神經-中樞-大腦的工作過程,或許是一個不斷迭代、不斷抽象的過程。

       這里的關鍵詞有兩個,一個是抽象,一個是迭代。從原始信號,做低級抽象,逐漸向高級抽象迭代。人類的邏輯思維,經常使用高度抽象的概念。例如,從原始信號攝入開始(瞳孔攝入像素 Pixels),接着做初步處理(大腦皮層某些細胞發現邊緣和方向),然后抽象(大腦判定,眼前的物體的形狀,是圓形的),然后進一步抽象(大腦進一步判定該物體是只氣球)。

       1995 年前后,Bruno Olshausen和 David Field 兩位學者任職 Cornell University,他們試圖同時用生理學和計算機的手段,雙管齊下,研究視覺問題。

       Bruno Olshausen和 David Field 的算法結果,與 David Hubel 和Torsten Wiesel 的生理發現,不謀而合!

      也就是說,復雜圖形,往往由一些基本結構組成。比如下圖:一個圖可以通過用64種正交的edges(可以理解成正交的基本結構)來線性表示。比如樣例的x可以用1-64個edges中的三個按照0.8,0.3,0.5的權重調和而成。而其他基本edge沒有貢獻,因此均為0 。

     小塊的圖形可以由基本edge構成,更結構化,更復雜的,具有概念性的圖形如何表示呢?這就需要更高層次的特征表示,比如V2,V4。因此V1看像素級是像素級。V2看V1是像素級,這個是層次遞進的,高層表達由底層表達的組合而成。專業點說就是基basis。V1取提出的basis是邊緣,然后V2層是V1層這些basis的組合,這時候V2區得到的又是高一層的basis。即上一層的basis組合的結果,上上層又是上一層的組合basis……(所以有大牛說Deep learning就是“搞基”,因為難聽,所以美其名曰Deep learning或者Unsupervised Feature Learning)。

直觀上說,就是找到make sense的小patch再將其進行combine,就得到了上一層的feature,遞歸地向上learning feature。

        在不同object上做training是,所得的edge basis 是非常相似的,但object parts和models 就會completely different了(那咱們分辨car或者face是不是容易多了)。

從文本來說,一個doc表示什么意思?我們描述一件事情,用什么來表示比較合適?用一個一個字嘛,我看不是,字就是像素級別了,起碼應該是term,換句話說每個doc都由term構成,但這樣表示概念的能力就夠了嘛,可能也不夠,需要再上一步,達到topic級,有了topic,再到doc就合理。但每個層次的數量差距很大,比如doc表示的概念->topic(千-萬量級)->term(10萬量級)->word(百萬量級)。

        一個人在看一個doc的時候,眼睛看到的是word,由這些word在大腦里自動切詞形成term,在按照概念組織的方式,先驗的學習,得到topic,然后再進行高層次的learning。

Deep Learning的基本思想

      假設我們有一個系統S,它有n層(S1,…Sn),它的輸入是I,輸出是O,形象地表示為: I =>S1=>S2=>…..=>Sn => O,如果輸出O等於輸入I,即輸入I經過這個系統變化之后沒有任何的信息損失(呵呵,大牛說,這是不可能的。信息論中有個“信息逐層丟失”的說法(信息處理不等式),設處理a信息得到b,再對b處理得到c,那么可以證明:a和c的互信息不會超過a和b的互信息。這表明信息處理不會增加信息,大部分處理會丟失信息。當然了,如果丟掉的是沒用的信息那多好啊),保持了不變,這意味着輸入I經過每一層Si都沒有任何的信息損失,即在任何一層Si,它都是原有信息(即輸入I)的另外一種表示。現在回到我們的主題Deep Learning,我們需要自動地學習特征,假設我們有一堆輸入I(如一堆圖像或者文本),假設我們設計了一個系統S(有n層),我們通過調整系統中參數,使得它的輸出仍然是輸入I,那么我們就可以自動地獲取得到輸入I的一系列層次特征,即S1,…, Sn。對於深度學習來說,其思想就是對堆疊多個層,也就是說這一層的輸出作為下一層的輸入。通過這種方式,就可以實現對輸入信息進行分級表達了。

      深度學習的實質,是通過構建具有很多隱層的機器學習模型和海量的訓練數據,來學習更有用的特征,從而最終提升分類或預測的准確性。因此,“深度模型”是手段,“特征學習”是目的。區別於傳統的淺層學習,深度學習的不同在於:1)強調了模型結構的深度,通常有5層、6層,甚至10多層的隱層節點;2)明確突出了特征學習的重要性,也就是說,通過逐層特征變換,將樣本在原空間的特征表示變換到一個新特征空間,從而使分類或預測更加容易。與人工規則構造特征的方法相比,利用大數據來學習特征,更能夠刻畫數據的豐富內在信息。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM