我們觀測世界,得到了一些數據,我們要從這些數據里面去找出規律來認識世界,一般來說,在概率上我們有一個一般性的操作步驟 1. 觀測樣本的存在 2. 每個樣本之間是獨立的 3. 所有樣本符合一個概率模型 我們最終想要得到的是一個概率密度的模型,有了概率密度模型以后,我們就可以統計 ...
主要解決在樣本的分布沒有足夠的先驗,也就是說我們不僅不知道分布的參數,連是什么類型的分布都不知道,這種情況下顯然不能用參數估計的方法。這里從簡單直觀的方法 直方圖法入手,引出KNN和Parzen窗兩種方法。 直方圖密度估計:出發點是分布函數 ,假設在某一個很小很小的超立方體V中是均勻分布,那么有 我們就可以得到關於概率密度函數p x 的估計了。 但是要有幾個苛刻的條件 通俗的說就是,在樣本數量n不 ...
2016-03-20 10:39 0 2000 推薦指數:
我們觀測世界,得到了一些數據,我們要從這些數據里面去找出規律來認識世界,一般來說,在概率上我們有一個一般性的操作步驟 1. 觀測樣本的存在 2. 每個樣本之間是獨立的 3. 所有樣本符合一個概率模型 我們最終想要得到的是一個概率密度的模型,有了概率密度模型以后,我們就可以統計 ...
核密度估計,或Parzen窗,是非參數估計概率密度的一種。比如機器學習中還有K近鄰法也是非參估計的一種,不過K近鄰通常是用來判別樣本類別的,就是把樣本空間每個點划分為與其最接近的K個訓練抽樣中,占比最高的類別。 直方圖 首先從直方圖切入。對於隨機變量$X$的一組抽樣,即使$X$的值 ...
非參數估計:核密度估計KDE from:http:// blog.csdn.net/pipisorry/article/details/53635895 核密度估計Kernel ...
在學概率論時,常常會看到各種稀奇古怪的名字,有的書上只介紹了該如何求解,但是從不介紹為什么這么叫以及有什么用,本文就介紹一下概率密度估計是什么以及是干什么用的,主要參考Jason BrownLee大神的一篇博文進行介紹。 后面部分名詞會以英文縮寫形式介紹,匯總如下: 概率密度 ...
核概率密度估計 本文分為三個部分:第一部分是直方圖,討論了如何創建它以及它的屬性是什么樣的。第二部分是核密度估計,介紹了它對比直方圖有哪些改進和更一般性的特點。 最后一部分是,為了從數據中抽取所有重要的特征,怎么樣選擇最合適,漂亮的核函數。 直方圖 直方圖是最簡單,並且也是最常見的一種的非 ...
一.實驗題目 (所用參考教材:《模式分類》---機械工業出版社 李宏東 姚天翔等譯) 4-3.考慮對於表格中的數據進行parzen窗估計和設計分類器,窗函數為一個球形的高斯函數, <a>編寫程序,使用parzen窗估計方法對一個任意的樣本點x進行分類。對分類器的訓練則使用表格中 ...
密度估計 密度估計分為參數估計(極大似然估計)和非參數估計兩種。 常用的非參數估計方法有直方圖法和核密度估計方法。 常采用高斯核,帶寬h(平滑參數)通常采用交叉驗證得到最優值。 MATLAB實現 參考https://www.mathworks.com/help/stats ...
非參數估計之 kernel density estimation (核密度估計) 張王李劉趙孫楊關注 0.1922018.11.22 22:17:06字數 1,642閱讀 8,195 在概率密度估計 ...