簡述 盧卡斯定理是用於求c(n,m) mod p,p為素數的值。 題目中求n和m很大的組合數時,結果一般都會溢出,所以經常會求組合數%p的某個值。當p大於m時,我們可以直接根據定義求分母在模p意義下的乘法逆元求出結果: 但當p<m時,分母的乘法逆元可能不存在(m可能是p ...
記得前幾章的組合數吧 我們學了O n 的做法,加上逆元,我們又會了O n 的做法 現在來了新問題,如果n和m很大呢, 比如求C n, m p ,n lt e ,m lt e ,p lt e 看到沒有,n和m這么大,但是p卻很小,我們要利用這個p 數論就是這么無聊的東西,我要是讓n e ,m e ,p e 你有本事給我算啊 ,還不是一樣算不出來 然后,我們著名的盧卡斯 Lucas 在人群中站了出來 ...
2016-02-19 01:36 3 4964 推薦指數:
簡述 盧卡斯定理是用於求c(n,m) mod p,p為素數的值。 題目中求n和m很大的組合數時,結果一般都會溢出,所以經常會求組合數%p的某個值。當p大於m時,我們可以直接根據定義求分母在模p意義下的乘法逆元求出結果: 但當p<m時,分母的乘法逆元可能不存在(m可能是p ...
盧卡斯定理 對於非負整數$a$,$b$和質數$p$,有$$C_{a}^{b} \equiv C_{a~mod~p}^{b~mod~p} \cdot C_{\lfloor{a/p}\rfloor}^{\lfloor{b/p}\rfloor}~~\left( {mod~p} \right ...
定義 若 \(p\) 為質數,且\(a\ge b\ge1\),則有: \[C_{a}^{b}\equiv C_{a/p}^{b/p}\cdot C_{a (mod\,p)}^{b(mod\, ...
公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p為素數)$$ 代碼如下 例題 HDU 3037 解析:m個相同的豆子,放到n個不同的樹 ...
前幾天gryz組織我們聽了幾天數論,蒟蒻 Nanjo_Qi 自然是聽得一點問題也沒有。 於是只能自己yy着學一點其他的數學的東西,正巧在那之前剛剛學會盧卡斯定理,於是現在就來水一篇博客。 其實是不想做題了。正巧機房裝修,吵的一批。 盧卡斯(Lucas)定理是什么? 他是用來求組合數 C(n ...
擴展盧卡斯定理用於求如下式子(其中\(p\)不一定是質數): \[C_n^m\ mod\ p \] 我們將這個問題由總體到局部地分為三個層次解決。 層次一:原問題 首先對\(p\)進行質因數分解: \[p=\prod_i p_i^{k_i} \] 顯然\(p_i ...
------------------------------------------------------------------------------------------- 這是蒟蒻對擴展盧卡斯的一些見解如有錯誤歡迎指出,不勝感激 普通盧卡斯 ...
組合數並不陌生(´・ω・`) 我們都學過組合數 會求組合數嗎 一般我們用楊輝三角性質 楊輝三角上的每一個數字都等於它的左上方和右上方的和(除了邊界) 第n行,第m個就是,就是C(n, m) (從0開始) 電腦上我們就開一個數組保存 ...