特征選擇是特征工程中的重要一環,其主要目的是從所有特征中選出相關特征 (relevant feature),或者說在不引起重要信息丟失的前提下去除掉無關特征 (irrelevant feature) 和冗余特征 (redundant feature)。進行特征選擇的好處主要有以下幾種 ...
特征選擇的常用方法之一是卡方檢驗,作為一個filter model的代表,卡方檢驗屬於簡單易計算的Feature weight algorithm 通過一定的measure方法給特征賦上一定的weight來表征與類別之間的相關度,通過weight大於一定閾值或選取topk個weight來進行特征選擇 。卡方檢驗和信息增益是feature weight algorithm常用且效果較優的算法。 卡 ...
2014-01-16 11:05 0 11664 推薦指數:
特征選擇是特征工程中的重要一環,其主要目的是從所有特征中選出相關特征 (relevant feature),或者說在不引起重要信息丟失的前提下去除掉無關特征 (irrelevant feature) 和冗余特征 (redundant feature)。進行特征選擇的好處主要有以下幾種 ...
前言: 上一篇提到了特征提取,或者叫做降維。在文本分類中,特征提取算法的優劣對於文本分類的結果具有非常大的影響。 所以選擇效果好的特征提取算法是文本分類前中很重要的步驟。於是這篇就對卡方檢驗做一個介紹。這是一個效果很好的特征提取方法。 之前對卡方檢驗做過介紹:卡方檢驗是通過對特征進行打分然后排 ...
Python有包可以直接實現特征選擇,也就是看自變量對因變量的相關性。今天我們先開看一下如何用卡方檢驗實現特征選擇。 1. 首先import包和實驗數據: 結果輸出: 2. 使用卡方檢驗來選擇特征 結果輸出為:array([[ 1.4, 0.2 ...
轉載:https://www.cnblogs.com/jasonfreak/p/5448385.html 特征選擇主要從兩個方面入手: 特征是否發散:特征發散說明特征的方差大,能夠根據取值的差異化度量目標信息. 特征與目標相關性:優先選取與目標高度相關性的. 對於特征選擇,有時候 ...
官網的一個例子(需要自己給出計算公式、和k值) 參數 1、score_func ...
概述 針對某種數據,通過一定的特征提取手段,或者記錄觀測到的特征,往往得到的是一組特征,但其中可能存在很多特征與當前要解決的問題並不密切等問題。另一方面,由於特征過多,在處理中會帶來計算量大、泛化能力差等問題,即所謂的“維數災難”。 特征選擇便是從給定的特征集合中選出相關特征子集的過程 ...
1、介紹 Max-Relevance and Min-Redundancy,最大相關—最小冗余。最大相關性保證特征和類別的相關性最大;最小冗余性確保特征之間的冗余性最小。它不僅考慮到了特征和標注之間的相關性,還考慮到了特征和特征之間的相關性。度量標准使用的是互信息(Mutual ...
3.2 Embedded嵌入法 嵌入法是一種讓算法自己決定使用哪些特征的方法,即特征選擇和算法訓練同時進行。在使用嵌入法時,我們先使用某些機器學習的算法和模型進行訓練,得到各個特征的權值系數,根據權值系數從大到小選擇特征。這些權值系數往往代表了特征對於模型的某種貢獻或某種重要性,比如決策樹和樹 ...