from sklearn.feature_selection import SelectKBest http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest.set_params class SelectKBest(_BaseFilter): """Select features according to the k highest scores. Read more in the :ref:`User Guide <univariate_feature_selection>`. Parameters ---------- score_func : callable Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues) or a single array with scores. Default is f_classif (see below "See also"). The default function only works with classification tasks. k : int or "all", optional, default=10 Number of top features to select. The "all" option bypasses selection, for use in a parameter search. Attributes ---------- scores_ : array-like, shape=(n_features,) Scores of features. pvalues_ : array-like, shape=(n_features,) p-values of feature scores, None if `score_func` returned only scores. Notes ----- Ties between features with equal scores will be broken in an unspecified way. See also -------- f_classif: ANOVA F-value between label/feature for classification tasks. mutual_info_classif: Mutual information for a discrete target. chi2: Chi-squared stats of non-negative features for classification tasks. f_regression: F-value between label/feature for regression tasks. mutual_info_regression: Mutual information for a continuous target. SelectPercentile: Select features based on percentile of the highest scores. SelectFpr: Select features based on a false positive rate test. SelectFdr: Select features based on an estimated false discovery rate. SelectFwe: Select features based on family-wise error rate. GenericUnivariateSelect: Univariate feature selector with configurable mode. """
官網的一個例子(需要自己給出計算公式、和k值)
參數
1、score_func : callable,函數取兩個數組X和y,返回一對數組(scores, pvalues)或一個分數的數組。默認函數為f_classif,默認函數只適用於分類函數。
2、k:int or "all", optional, default=10。所選擇的topK個特征。“all”選項則繞過選擇,用於參數搜索。
屬性
1、scores_ : array-like, shape=(n_features,),特征的得分
2、pvalues_ : array-like, shape=(n_features,),特征得分的p_value值,如果score_func只返回分數,則返回None。
score_func里可選的公式
方法
1、fit(X,y),在(X,y)上運行記分函數並得到適當的特征。
2、fit_transform(X[, y]),擬合數據,然后轉換數據。
3、get_params([deep]),獲得此估計器的參數。
4、get_support([indices]),獲取所選特征的掩碼或整數索引。
5、inverse_transform(X),反向變換操作。
6、set_params(**params),設置估計器的參數。
7、transform(X),將X還原為所選特征。
如何返回選擇特征的名稱或者索引。其實在上面的方法中已經提了一下了,那就是get_support()
之前的digit數據是不帶特征名稱的,我選擇了帶特征的波士頓房價數據,因為是回歸數據,所以計算的評價指標也跟着變換了,f_regression,這里需要先fit一下,才能使用get_support()。里面的參數如果索引選擇True,
返回值就是feature的索引,可能想直接返回feature name在這里不能這么直接的調用了,但是在dataset里面去對應一下應該很容易的。這里我給出的K是5,選擇得分最高的前5個特征,分別是第2,5,9,10,12個屬性。
如果里面的參數選擇了False,返回值就是該特征是否被選擇的Boolean值。
鏈接:https://www.jianshu.com/p/586ba8c96a3d