原文:Deep learning:五(regularized線性回歸練習)

前言: 本節主要是練習regularization項的使用原則。因為在機器學習的一些模型中,如果模型的參數太多,而訓練樣本又太少的話,這樣訓練出來的模型很容易產生過擬合現象。因此在模型的損失函數中,需要對模型的參數進行 懲罰 ,這樣的話這些參數就不會太大,而越小的參數說明模型越簡單,越簡單的模型則越不容易產生過擬合現象。本文參考的資料參考網頁:http: openclassroom.stanfo ...

2013-03-17 15:15 6 16014 推薦指數:

查看詳情

Deep learning:六(regularized logistic回歸練習)

  前言:   在上一講Deep learning:五(regularized線性回歸練習)中已經介紹了regularization項在線性回歸問題中的應用,這節主要是練習regularization項在logistic回歸中的應用,並使用牛頓法來求解模型的參數。參考的網頁資料為:http ...

Mon Mar 18 04:04:00 CST 2013 5 14709
Deep learning:四(logistic regression練習)

  前言:   本節來練習下logistic regression相關內容,參考的資料為網頁:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc ...

Sun Mar 17 05:59:00 CST 2013 12 29183
Deep learning:二(linear regression練習)

  前言   本文是多元線性回歸練習,這里練習的是最簡單的二元線性回歸,參考斯坦福大學的教學網http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc ...

Sat Mar 16 00:20:00 CST 2013 25 37188
Deep learning:九(Sparse Autoencoder練習)

  前言:   現在來進入sparse autoencoder的一個實例練習,參考Ng的網頁教程:Exercise:Sparse Autoencoder。這個例子所要實現的內容大概如下:從給定的很多張自然圖片中截取出大小為8*8的小patches圖片共10000張,現在需要用sparse ...

Wed Mar 20 18:58:00 CST 2013 103 51508
Deep learning:三(Multivariance Linear Regression練習)

  前言:   本文主要是來練習多變量線性回歸問題(其實本文也就3個變量),參考資料見網頁:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises ...

Sat Mar 16 04:55:00 CST 2013 19 22049
Deep learning:二十四(stacked autoencoder練習)

  前言:   本次是練習2個隱含層的網絡的訓練方法,每個網絡層都是用的sparse autoencoder思想,利用兩個隱含層的網絡來提取出輸入數據的特征。本次實驗驗要完成的任務是對MINST進行手寫數字識別,實驗內容及步驟參考網頁教程Exercise: Implement deep ...

Wed Apr 10 06:05:00 CST 2013 77 30073
Deep learning:十四(Softmax Regression練習)

  前言:   這篇文章主要是用來練習softmax regression在多分類器中的應用,關於該部分的理論知識已經在前面的博文中Deep learning:十三(Softmax Regression)有所介紹。本次的實驗內容是參考網頁:http ...

Sun Mar 24 04:17:00 CST 2013 74 27172
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM