Deep learning:九(Sparse Autoencoder練習)


 

  前言:

  現在來進入sparse autoencoder的一個實例練習,參考Ng的網頁教程:Exercise:Sparse Autoencoder。這個例子所要實現的內容大概如下:從給定的很多張自然圖片中截取出大小為8*8的小patches圖片共10000張,現在需要用sparse autoencoder的方法訓練出一個隱含層網絡所學習到的特征。該網絡共有3層,輸入層是64個節點,隱含層是25個節點,輸出層當然也是64個節點了。

 

  實驗基礎:

  其實實現該功能的主要步驟還是需要計算出網絡的損失函數以及其偏導數,具體的公式可以參考前面的博文Deep learning:八(Sparse Autoencoder)。下面用簡單的語言大概介紹下這個步驟,方便大家理清算法的流程。

  1. 計算出網絡每個節點的輸入值(即程序中的z值)和輸出值(即程序中的a值,a是z的sigmoid函數值)。

  2. 利用z值和a值計算出網絡每個節點的誤差值(即程序中的delta值)。

  3. 這樣可以利用上面計算出的每個節點的a,z,delta來表達出系統的損失函數以及損失函數的偏導數了,當然這些都是一些數學推導,其公式就是前面的博文Deep learning:八(Sparse Autoencoder)了。

  其實步驟1是前向進行的,也就是說按照輸入層——》隱含層——》輸出層的方向進行計算。而步驟2是方向進行的(這也是該算法叫做BP算法的來源),即每個節點的誤差值是按照輸出層——》隱含層——》輸入層方向進行的。

  一些malab函數:

  bsxfun:

  C=bsxfun(fun,A,B)表達的是兩個數組A和B間元素的二值操作,fun是函數句柄或者m文件,或者是內嵌的函數。在實際使用過程中fun有很多選擇比如說加,減等,前面需要使用符號’@’.一般情況下A和B需要尺寸大小相同,如果不相同的話,則只能有一個維度不同,同時A和B中在該維度處必須有一個的維度為1。比如說bsxfun(@minus, A, mean(A)),其中A和mean(A)的大小是不同的,這里的意思需要先將mean(A)擴充到和A大小相同,然后用A的每個元素減去擴充后的mean(A)對應元素的值。

  rand:

  生成均勻分布的偽隨機數。分布在(0~1)之間
  主要語法:rand(m,n)生成m行n列的均勻分布的偽隨機數
             rand(m,n,'double')生成指定精度的均勻分布的偽隨機數,參數還可以是'single'
             rand(RandStream,m,n)利用指定的RandStream(我理解為隨機種子)生成偽隨機數

  randn:

  生成標准正態分布的偽隨機數(均值為0,方差為1)。主要語法:和上面一樣

  randi:

  生成均勻分布的偽隨機整數
   主要語法:randi(iMax)在閉區間(0,iMax)生成均勻分布的偽隨機整數 
             randi(iMax,m,n)在閉區間(0,iMax)生成mXn型隨機矩陣
             r = randi([iMin,iMax],m,n)在閉區間(iMin,iMax)生成mXn型隨機矩陣

  exist:

  測試參數是否存在,比如說exist('opt_normalize', 'var')表示檢測變量opt_normalize是否存在,其中的’var’表示變量的意思。

  colormap:

  設置當前常見的顏色值表。

  floor:

  floor(A):取不大於A的最大整數。

  ceil:

  ceil(A):取不小於A的最小整數。

  imagesc:

  imagesc和image類似,可以用於顯示圖像。比如imagesc(array,'EraseMode','none',[-1 1]),這里的意思是將array中的數據線性映射到[-1,1]之間,然后使用當前設置的顏色表進行顯示。此時的[-1,1]充滿了整個顏色表。背景擦除模式設置為node,表示不擦除背景。

  repmat:

  該函數是擴展一個矩陣並把原來矩陣中的數據復制進去。比如說B = repmat(A,m,n),就是創建一個矩陣B,B中復制了共m*n個A矩陣,因此B矩陣的大小為[size(A,1)*m  size(A,2)*m]。

  使用函數句柄的作用:

  不使用函數句柄的情況下,對函數多次調用,每次都要為該函數進行全面的路徑搜索,直接影響計算速度,借助句柄可以完全避免這種時間損耗。也就是直接指定了函數的指針。函數句柄就像一個函數的名字,有點類似於C++程序中的引用。

 

  實驗流程:

  首先運行主程序train.m中的步驟1,即隨機采樣出10000個小的patch,並且顯示出其中的204個patch圖像,圖像顯示如下所示:

   

  然后運行train.m中的步驟2和步驟3,進行損失函數和梯度函數的計算並驗證。進行gradient checking的時間可能會太長,我這里大概用了1個半小時以上(反正1個多小時還沒checking完,所以去睡覺了),當用gradient checking時,發現誤差只有6.5101e-11,遠小於1e-9,所以說明前面的損失函數和偏導函數程序是對的。后面就可以接着用優化算法來求參數了,本程序給的是優化算法是L-BFGS。經過幾分鍾的優化,就出結果了。

  最后的W1的權值如下所示:

   

 

 

  實驗代碼:

   train.m:

%% CS294A/CS294W Programming Assignment Starter Code

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  programming assignment. You will need to complete the code in sampleIMAGES.m,
%  sparseAutoencoderCost.m and computeNumericalGradient.m. 
%  For the purpose of completing the assignment, you do not need to
%  change the code in this file. 
%
%%======================================================================
%% STEP 0: Here we provide the relevant parameters values that will
%  allow your sparse autoencoder to get good filters; you do not need to 
%  change the parameters below.

visibleSize = 8*8;   % number of input units 
hiddenSize = 25;     % number of hidden units 
sparsityParam = 0.01;   % desired average activation of the hidden units.
                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
             %  in the lecture notes). 
lambda = 0.0001;     % weight decay parameter       
beta = 3;            % weight of sparsity penalty term       

%%======================================================================
%% STEP 1: Implement sampleIMAGES
%
%  After implementing sampleIMAGES, the display_network command should
%  display a random sample of 200 patches from the dataset

patches = sampleIMAGES;
display_network(patches(:,randi(size(patches,2),204,1)),8);%randi(size(patches,2),204,1)
                                                           %為產生一個204維的列向量,每一維的值為0~10000
                                                           %中的隨機數,說明是隨機取204個patch來顯示


%  Obtain random parameters theta
theta = initializeParameters(hiddenSize, visibleSize);

%%======================================================================
%% STEP 2: Implement sparseAutoencoderCost
%
%  You can implement all of the components (squared error cost, weight decay term,
%  sparsity penalty) in the cost function at once, but it may be easier to do 
%  it step-by-step and run gradient checking (see STEP 3) after each step.  We 
%  suggest implementing the sparseAutoencoderCost function using the following steps:
%
%  (a) Implement forward propagation in your neural network, and implement the 
%      squared error term of the cost function.  Implement backpropagation to 
%      compute the derivatives.   Then (using lambda=beta=0), run Gradient Checking 
%      to verify that the calculations corresponding to the squared error cost 
%      term are correct.
%
%  (b) Add in the weight decay term (in both the cost function and the derivative
%      calculations), then re-run Gradient Checking to verify correctness. 
%
%  (c) Add in the sparsity penalty term, then re-run Gradient Checking to 
%      verify correctness.
%
%  Feel free to change the training settings when debugging your
%  code.  (For example, reducing the training set size or 
%  number of hidden units may make your code run faster; and setting beta 
%  and/or lambda to zero may be helpful for debugging.)  However, in your 
%  final submission of the visualized weights, please use parameters we 
%  gave in Step 0 above.

[cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, lambda, ...
                                     sparsityParam, beta, patches);

%%======================================================================
%% STEP 3: Gradient Checking
%
% Hint: If you are debugging your code, performing gradient checking on smaller models 
% and smaller training sets (e.g., using only 10 training examples and 1-2 hidden 
% units) may speed things up.

% First, lets make sure your numerical gradient computation is correct for a
% simple function.  After you have implemented computeNumericalGradient.m,
% run the following: 
checkNumericalGradient();

% Now we can use it to check your cost function and derivative calculations
% for the sparse autoencoder.  
numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...
                                                  hiddenSize, lambda, ...
                                                  sparsityParam, beta, ...
                                                  patches), theta);

% Use this to visually compare the gradients side by side
%disp([numgrad grad]); 

% Compare numerically computed gradients with the ones obtained from backpropagation
diff = norm(numgrad-grad)/norm(numgrad+grad);
disp(diff); % Should be small. In our implementation, these values are
            % usually less than 1e-9.

            % When you got this working, Congratulations!!! 

%%======================================================================
%% STEP 4: After verifying that your implementation of
%  sparseAutoencoderCost is correct, You can start training your sparse
%  autoencoder with minFunc (L-BFGS).

%  Randomly initialize the parameters
theta = initializeParameters(hiddenSize, visibleSize);

%  Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                          % function. Generally, for minFunc to work, you
                          % need a function pointer with two outputs: the
                          % function value and the gradient. In our problem,
                          % sparseAutoencoderCost.m satisfies this.
options.maxIter = 400;      % Maximum number of iterations of L-BFGS to run 
options.display = 'on';


[opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                   visibleSize, hiddenSize, ...
                                   lambda, sparsityParam, ...
                                   beta, patches), ...
                              theta, options);

%%======================================================================
%% STEP 5: Visualization 

W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
figure;
display_network(W1', 12); 

print -djpeg weights.jpg   % save the visualization to a file 

 

  sampleIMAGES.m:

function patches = sampleIMAGES()
% sampleIMAGES
% Returns 10000 patches for training

load IMAGES;    % load images from disk 

patchsize = 8;  % we'll use 8x8 patches 
numpatches = 10000;

% Initialize patches with zeros.  Your code will fill in this matrix--one
% column per patch, 10000 columns. 
patches = zeros(patchsize*patchsize, numpatches);

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Fill in the variable called "patches" using data 
%  from IMAGES.  
%  
%  IMAGES is a 3D array containing 10 images
%  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
%  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
%  it. (The contrast on these images look a bit off because they have
%  been preprocessed using using "whitening."  See the lecture notes for
%  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
%  patch corresponding to the pixels in the block (21,21) to (30,30) of
%  Image 1
for imageNum = 1:10%在每張圖片中隨機選取1000個patch,共10000個patch
    [rowNum colNum] = size(IMAGES(:,:,imageNum));
    for patchNum = 1:1000%實現每張圖片選取1000個patch
        xPos = randi([1,rowNum-patchsize+1]);
        yPos = randi([1, colNum-patchsize+1]);
        patches(:,(imageNum-1)*1000+patchNum) = reshape(IMAGES(xPos:xPos+7,yPos:yPos+7,...
                                                        imageNum),64,1);
    end
end


%% ---------------------------------------------------------------
% For the autoencoder to work well we need to normalize the data
% Specifically, since the output of the network is bounded between [0,1]
% (due to the sigmoid activation function), we have to make sure 
% the range of pixel values is also bounded between [0,1]
patches = normalizeData(patches);

end


%% ---------------------------------------------------------------
function patches = normalizeData(patches)

% Squash data to [0.1, 0.9] since we use sigmoid as the activation
% function in the output layer

% Remove DC (mean of images). 
patches = bsxfun(@minus, patches, mean(patches));

% Truncate to +/-3 standard deviations and scale to -1 to 1
pstd = 3 * std(patches(:));
patches = max(min(patches, pstd), -pstd) / pstd;%因為根據3sigma法則,95%以上的數據都在該區域內
                                                % 這里轉換后將數據變到了-1到1之間

% Rescale from [-1,1] to [0.1,0.9]
patches = (patches + 1) * 0.4 + 0.1;

end

 

  initializeParameters.m:

function theta = initializeParameters(hiddenSize, visibleSize)

%% Initialize parameters randomly based on layer sizes.
r  = sqrt(6) / sqrt(hiddenSize+visibleSize+1);   % we'll choose weights uniformly from the interval [-r, r]
W1 = rand(hiddenSize, visibleSize) * 2 * r - r;
W2 = rand(visibleSize, hiddenSize) * 2 * r - r;

b1 = zeros(hiddenSize, 1);
b2 = zeros(visibleSize, 1);

% Convert weights and bias gradients to the vector form.
% This step will "unroll" (flatten and concatenate together) all 
% your parameters into a vector, which can then be used with minFunc. 
theta = [W1(:) ; W2(:) ; b1(:) ; b2(:)];

end

 

sparseAutoencoderCost.m:

function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                             lambda, sparsityParam, beta, data)

% visibleSize: the number of input units (probably 64) 
% hiddenSize: the number of hidden units (probably 25) 
% lambda: weight decay parameter
% sparsityParam: The desired average activation for the hidden units (denoted in the lecture
%                           notes by the greek alphabet rho, which looks like a lower-case "p").
% beta: weight of sparsity penalty term
% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
  
% The input theta is a vector (because minFunc expects the parameters to be a vector). 
% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
% follows the notation convention of the lecture notes. 

%將長向量轉換成每一層的權值矩陣和偏置向量值
W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);

% Cost and gradient variables (your code needs to compute these values). 
% Here, we initialize them to zeros. 
cost = 0;
W1grad = zeros(size(W1)); 
W2grad = zeros(size(W2));
b1grad = zeros(size(b1)); 
b2grad = zeros(size(b2));

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
%                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
%
% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
% as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
% respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 
% with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 
% [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 
% of the lecture notes (and similarly for W2grad, b1grad, b2grad).
% 
% Stated differently, if we were using batch gradient descent to optimize the parameters,
% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 
% 

Jcost = 0;%直接誤差
Jweight = 0;%權值懲罰
Jsparse = 0;%稀疏性懲罰
[n m] = size(data);%m為樣本的個數,n為樣本的特征數

%前向算法計算各神經網絡節點的線性組合值和active值
z2 = W1*data+repmat(b1,1,m);%注意這里一定要將b1向量復制擴展成m列的矩陣
a2 = sigmoid(z2);
z3 = W2*a2+repmat(b2,1,m);
a3 = sigmoid(z3);

% 計算預測產生的誤差
Jcost = (0.5/m)*sum(sum((a3-data).^2));

%計算權值懲罰項
Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));

%計算稀釋性規則項
rho = (1/m).*sum(a2,2);%求出第一個隱含層的平均值向量
Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ...
        (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));

%損失函數的總表達式
cost = Jcost+lambda*Jweight+beta*Jsparse;

%反向算法求出每個節點的誤差值
d3 = -(data-a3).*sigmoidInv(z3);
sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%因為加入了稀疏規則項,所以
                                                             %計算偏導時需要引入該項
d2 = (W2'*d3+repmat(sterm,1,m)).*sigmoidInv(z2); 

%計算W1grad 
W1grad = W1grad+d2*data';
W1grad = (1/m)*W1grad+lambda*W1;

%計算W2grad  
W2grad = W2grad+d3*a2';
W2grad = (1/m).*W2grad+lambda*W2;

%計算b1grad 
b1grad = b1grad+sum(d2,2);
b1grad = (1/m)*b1grad;%注意b的偏導是一個向量,所以這里應該把每一行的值累加起來

%計算b2grad 
b2grad = b2grad+sum(d3,2);
b2grad = (1/m)*b2grad;



% %%方法二,每次處理1個樣本,速度慢
% m=size(data,2);
% rho=zeros(size(b1));
% for i=1:m
%     %feedforward
%     a1=data(:,i);
%     z2=W1*a1+b1;
%     a2=sigmoid(z2);
%     z3=W2*a2+b2;
%     a3=sigmoid(z3);
%     %cost=cost+(a1-a3)'*(a1-a3)*0.5;
%     rho=rho+a2;
% end
% rho=rho/m;
% sterm=beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));
% %sterm=beta*2*rho;
% for i=1:m
%     %feedforward
%     a1=data(:,i);
%     z2=W1*a1+b1;
%     a2=sigmoid(z2);
%     z3=W2*a2+b2;
%     a3=sigmoid(z3);
%     cost=cost+(a1-a3)'*(a1-a3)*0.5;
%     %backpropagation
%     delta3=(a3-a1).*a3.*(1-a3);
%     delta2=(W2'*delta3+sterm).*a2.*(1-a2);
%     W2grad=W2grad+delta3*a2';
%     b2grad=b2grad+delta3;
%     W1grad=W1grad+delta2*a1';
%     b1grad=b1grad+delta2;
% end
% 
% kl=sparsityParam*log(sparsityParam./rho)+(1-sparsityParam)*log((1-sparsityParam)./(1-rho));
% %kl=rho.^2;
% cost=cost/m;
% cost=cost+sum(sum(W1.^2))*lambda/2.0+sum(sum(W2.^2))*lambda/2.0+beta*sum(kl);
% W2grad=W2grad./m+lambda*W2;
% b2grad=b2grad./m;
% W1grad=W1grad./m+lambda*W1;
% b1grad=b1grad./m;


%-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc).  Specifically, we will unroll
% your gradient matrices into a vector.

grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];

end

%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients.  This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 

function sigm = sigmoid(x)

    sigm = 1 ./ (1 + exp(-x));
end

%sigmoid函數的逆向求導函數
function sigmInv = sigmoidInv(x)

    sigmInv = sigmoid(x).*(1-sigmoid(x));
end

 

computeNumericalGradient.m:

function numgrad = computeNumericalGradient(J, theta)
% numgrad = computeNumericalGradient(J, theta)
% theta: a vector of parameters
% J: a function that outputs a real-number. Calling y = J(theta) will return the
% function value at theta. 
  
% Initialize numgrad with zeros
numgrad = zeros(size(theta));

%% ---------- YOUR CODE HERE --------------------------------------
% Instructions: 
% Implement numerical gradient checking, and return the result in numgrad.  
% (See Section 2.3 of the lecture notes.)
% You should write code so that numgrad(i) is (the numerical approximation to) the 
% partial derivative of J with respect to the i-th input argument, evaluated at theta.  
% I.e., numgrad(i) should be the (approximately) the partial derivative of J with 
% respect to theta(i).
%                
% Hint: You will probably want to compute the elements of numgrad one at a time. 

epsilon = 1e-4;
n = size(theta,1);
E = eye(n);
for i = 1:n
    delta = E(:,i)*epsilon;
    numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0);
end

% n=size(theta,1);
% E=eye(n);
% epsilon=1e-4;
% for i=1:n
%     dtheta=E(:,i)*epsilon;
%     numgrad(i)=(J(theta+dtheta)-J(theta-dtheta))/epsilon/2.0;
% end

%% ---------------------------------------------------------------
end

 

  checkNumericalGradient.m:

function [] = checkNumericalGradient()
% This code can be used to check your numerical gradient implementation 
% in computeNumericalGradient.m
% It analytically evaluates the gradient of a very simple function called
% simpleQuadraticFunction (see below) and compares the result with your numerical
% solution. Your numerical gradient implementation is incorrect if
% your numerical solution deviates too much from the analytical solution.
  
% Evaluate the function and gradient at x = [4; 10]; (Here, x is a 2d vector.)
x = [4; 10];
[value, grad] = simpleQuadraticFunction(x);

% Use your code to numerically compute the gradient of simpleQuadraticFunction at x.
% (The notation "@simpleQuadraticFunction" denotes a pointer to a function.)
numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);

% Visually examine the two gradient computations.  The two columns
% you get should be very similar. 
disp([numgrad grad]);
fprintf('The above two columns you get should be very similar.\n(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n');

% Evaluate the norm of the difference between two solutions.  
% If you have a correct implementation, and assuming you used EPSILON = 0.0001 
% in computeNumericalGradient.m, then diff below should be 2.1452e-12 
diff = norm(numgrad-grad)/norm(numgrad+grad);
disp(diff); 
fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)\n\n');
end


  
function [value,grad] = simpleQuadraticFunction(x)
% this function accepts a 2D vector as input. 
% Its outputs are:
%   value: h(x1, x2) = x1^2 + 3*x1*x2
%   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 
% Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming
% that computeNumericalGradients will use only the first returned value of this function.

value = x(1)^2 + 3*x(1)*x(2);

grad = zeros(2, 1);
grad(1)  = 2*x(1) + 3*x(2);
grad(2)  = 3*x(1);

end

 

  display_network.m:

function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)
% This function visualizes filters in matrix A. Each column of A is a
% filter. We will reshape each column into a square image and visualizes
% on each cell of the visualization panel. 
% All other parameters are optional, usually you do not need to worry
% about it.
% opt_normalize: whether we need to normalize the filter so that all of
% them can have similar contrast. Default value is true.
% opt_graycolor: whether we use gray as the heat map. Default is true.
% cols: how many columns are there in the display. Default value is the
% squareroot of the number of columns in A.
% opt_colmajor: you can switch convention to row major for A. In that
% case, each row of A is a filter. Default value is false.
warning off all

%exist(A),測試A是否存在,'var'表示只檢測變量
if ~exist('opt_normalize', 'var') || isempty(opt_normalize)
    opt_normalize= true;
end

if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)
    opt_graycolor= true;
end

if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)
    opt_colmajor = false;
end

% rescale
A = A - mean(A(:));

%colormap(gray)表示用灰度場景
if opt_graycolor, colormap(gray); end

% compute rows, cols
[L M]=size(A);
sz=sqrt(L);
buf=1;
if ~exist('cols', 'var')%沒有給定列數的情況下
    if floor(sqrt(M))^2 ~= M %M不是平方數時
        n=ceil(sqrt(M));
        while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end
        m=ceil(M/n);%m是最終要的小patch圖像的尺寸大小
    else
        n=sqrt(M);
        m=n;
    end
else
    n = cols;
    m = ceil(M/n);
end

array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));

if ~opt_graycolor
    array = 0.1.* array;
end


if ~opt_colmajor
    k=1;
    for i=1:m
        for j=1:n
            if k>M, 
                continue; 
            end
            clim=max(abs(A(:,k)));
            if opt_normalize
                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
            else
                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));
            end
            k=k+1;
        end
    end
else
    k=1;
    for j=1:n
        for i=1:m
            if k>M, 
                continue; 
            end
            clim=max(abs(A(:,k)));
            if opt_normalize
                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
            else
                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);
            end
            k=k+1;
        end
    end
end

if opt_graycolor
    h=imagesc(array,'EraseMode','none',[-1 1]);%這里講EraseMode設置為none,表示重繪時不擦除任何像素點
else
    h=imagesc(array,'EraseMode','none',[-1 1]);
end
axis image off

drawnow;

warning on all

 

 

  實驗總結:

  實驗結果顯示的那些權值圖像代表什么呢?參考了內容Visualizing a Trained Autoencoder可以知道,如果輸入的特征滿足二泛數小於1的約束,即滿足:

那么可以證明只有當輸入的x中的每一維滿足:時,其對隱含層的active才最大,也就是說最容易是隱含層的節點輸出為1,可以看出,輸入值和權值應該是正相關的。

 

  2013.5.6補:

  以前博文中在用vector的方式寫sparseAutoencoderCost.m文件時,一直不成功,現已經解決該問題了,解決方法是:把以前的Iweight換成Jweight即可。

 

 

  參考資料:

     Exercise:Sparse Autoencoder

     Deep learning:八(Sparse Autoencoder)

      Autoencoders and Sparsity

     Visualizing a Trained Autoencoder

     UFLDL練習(Sparse Autoencoder)

     http://code.google.com/p/nlsbook/source/browse/trunk/nlsbook/cs294ps1/starter/?r=28

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM