文章目錄 1. 前言 2.基礎數學知識 2.1.凸函數 2.2.Jensen不等式 3.EM算法所解決問題的例子 4.EM算法 ...
最大期望算法 Expectation maximization algorithm,又譯期望最大化算法 在統計中被用於尋找,依賴於不可觀察的隱性變量的概率模型中,參數的最大似然估計。 在統計計算中,最大期望 EM 算法是在概率 probabilistic 模型中尋找參數最大似然估計或者最大后驗估計的算法,其中概率模型依賴於無法觀測的隱藏變量 Latent Variable 。最大期望經常用在機器學 ...
2012-03-21 15:21 0 8415 推薦指數:
文章目錄 1. 前言 2.基礎數學知識 2.1.凸函數 2.2.Jensen不等式 3.EM算法所解決問題的例子 4.EM算法 ...
一、前言 這是本人寫的第一篇博客,是學習李航老師的《統計學習方法》書以及斯坦福機器學習課Andrew Ng的EM算法課后,對EM算法學習的介紹性筆記,如有寫得不恰當或錯誤的地方,請指出,並多多包涵,謝謝。另外本人數學功底不是很好,有些數學公式我會說明的仔細點的,如果數學基礎好,可直接 ...
EM算法簡述 EM算法是一種迭代算法,主要用於含有隱變量的概率模型參數的極大似然估計,或極大后驗概率估計。EM算法的每次迭代由兩步完成: E步,求期望 M步,求極大。 EM算法的引入 如果概率模型的變量都是觀測變量,那么給定數據,可以直接用極大似然估計法或貝葉斯估計法估計 ...
1 極大似然估計 假設有如圖1的X所示的抽取的n個學生某門課程的成績,又知學生的成績符合高斯分布f(x|μ,σ2),求學生的成績最符合哪種高斯分布,即μ和σ2最優值是什么? 圖1 學生成 ...
原創博客,轉載請注明出處 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一種求解最大似然概率估計的方法。往往用在存在隱藏變量的問題上。我這里特意用"框架"來稱呼它,是因為EM算法不像一些常見 ...
1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又譯為期望最大化算法),是在概率模型中尋找參數最大似然估計或者最大后驗估計的算法,其中概率模型依賴於無法觀測的隱性變量。 最大期望算法經過兩個步驟交替進行計算, 第一步是計算 ...
em算法 em算法指的是最大期望算法(Expectation Maximization Algorithm,又譯期望最大化算法),是一種 迭代算法,用於含有隱變量(latent variable)的概率參數模型的 最大似然估計或極大后驗概率估計 ...
一、最大似然估計與最大后驗概率 1、概率與統計 概率與統計是兩個不同的概念。 概率是指:模型參數已知,X未知,p(x1) ... p(xn) 都是對應的xi的概率 統計是指:模型參數未知,X已知,根據觀測的現象,求模型的參數 2、似然函數與概率函數 似然跟概率是同義詞,所以似 ...