一、最大似然估計與最大后驗概率
1、概率與統計
概率與統計是兩個不同的概念。
概率是指:模型參數已知,X未知,p(x1) ... p(xn) 都是對應的xi的概率
統計是指:模型參數未知,X已知,根據觀測的現象,求模型的參數
2、似然函數與概率函數
- 似然跟概率是同義詞,所以似然也是表示概率,但這個概率有些不一樣。
似然是指:模型在不同參數下, p(x1) ... p(xn) 發生的概率
似然估計是指:模型的參數未知,X已知,根據觀測現象(X),估計模型參數的過程
- 最大似然估計(為什么要最大):
對於觀測數據集x1,x2...xn, 在θ下發生的概率分別是p(x1|θ),p(x2|θ)... p(xn|θ), 所以出現該觀測數據集的概率為 P(X|θ) = p(x1|θ)p(x2|θ)... p(xn|θ), 那想一想為什么我一下就會抽出x1, x2 ... xn這n個數據呢?一種直觀的解釋就是 它們發生的概率大,所以 就是求讓 P(X)最大下的θ,這就是最大似然估計。
3、最大后驗概率
最大似然是求參數,讓P(X|θ)最大,最大后驗概率是讓P(X|θ)P(θ)最大,相當於給似然函數加了一個關於θ的權重。
為什么要讓 P(X|θ)P(θ) 最大?
想一想我們在干什么?我們是根據一群觀測數據X = (x1, x2 ... xn) 估計模型的參數,即求 P(θ0 | X), 用貝葉斯改一下就是
P(θ0 | X) = P(X|θ0) P(θ0) / P(X) , 對於給定的觀測序列X來說P(X)是固定的,所以我們求后驗概率P(θ0 | X)最大就是求P(X|θ0) P(θ0)最大
對於👆的貝葉斯公式來說, 其實就是 【后驗概率P(θ0 | X)】 等於 【似然函數 P(X|θ0)】 乘以 【先驗概率P(θ0)】
參考
https://zhuanlan.zhihu.com/p/26614750
https://blog.csdn.net/u011508640/article/details/72815981
https://zhuanlan.zhihu.com/p/26614750
二、高斯混合模型(Gaussian Mixture Model)
每個 GMM 由
個 Gaussian 分布組成,每個 Gaussian 稱為一個“Component”,這些 Component 線性加成在一起就組成了 GMM 的概率密度函數:

根據上面的式子,如果我們要從 GMM 的分布中隨機地取一個點的話,實際上可以分為兩步:
首先隨機地在這
個 Component 之中選一個,每個 Component 被選中的概率實際上就是它的系數
,選中了 Component 之后,再單獨地考慮從這個 Component 的分布中選取一個點就可以了──這里已經回到了普通的 Gaussian 分布,轉化為了已知的問題。
GMM可以用來做分類,每個Gaussian都是一個類別。
現在假設我們有
個數據點,並假設它們服從某個分布(記作
),現在要確定里面的一些參數的值,
例如,在 GMM 中,我們就需要確定
、
和
這些參數。 我們的想法是,找到這樣一組參數,它所確定的概率分布生成這些給定的數據點的概率最大,而這個概率實際上就等於
,我們把這個乘積稱作似然函數 (Likelihood Function)。通常單個點的概率都很小,許多很小的數字相乘起來在計算機里很容易造成浮點數下溢,因此我們通常會對其取對數,把乘積變成加和
,得到 log-likelihood function 。接下來我們只要將這個函數最大化(通常的做法是求導並令導數等於零,然后解方程),亦即找到這樣一組參數值,它讓似然函數取得最大值,我們就認為這是最合適的參數,這樣就完成了參數估計的過程。
下面讓我們來看一看 GMM 的 log-likelihood function :

由於在對數函數里面又有加和,我們沒法直接用求導解方程的辦法直接求得最大值。為了解決這個問題,我們采取之前從 GMM 中隨機選點的辦法:分成兩步,實際上也就類似於 K-means 的兩步。
1、估計數據由每個 Component 生成的概率(並不是每個 Component 被選中的概率):對於每個數據
來說,它由第
個 Component 生成的概率為

由於式子里的
和
也是需要我們估計的值,我們采用迭代法,在計算
的時候我們假定
和
均已知,我們將取上一次迭代所得的值(或者初始值)。
2、估計每個 Component 的參數:現在我們假設上一步中得到的
就是正確的“數據
由 Component
生成的概率”,亦可以當做該 Component 在生成這個數據上所做的貢獻,或者說,我們可以看作
這個值其中有
這部分是由 Component
所生成的。集中考慮所有的數據點,現在實際上可以看作 Component 生成了
這些點。由於每個 Component 都是一個標准的 Gaussian 分布,可以很容易分布求出最大似然所對應的參數值:

其中
,並且
也順理成章地可以估計為
。 //不太懂
3、重復迭代前面兩步,直到似然函數的值收斂為止。
參考:
https://github.com/wrayzheng/gmm-em-clustering
三、Expectation Maximum (EM)算法
假設我們有一個樣本集{x(1),…,x(m)},包含m個獨立的樣本。但每個樣本i對應的類別z(i)是未知的(相當於聚類),也即隱含變量。故我們需要估計概率模型p(x,z)的參數θ,但是由於里面包含隱含變量z,所以很難用最大似然求解,但如果z知道了,那我們就很容易求解了。
對於參數估計,我們本質上還是想獲得一個使似然函數最大化的那個參數θ,現在與最大似然不同的只是似然函數式中多了一個未知的變量z,見下式(1)。也就是說我們的目標是找到適合的θ和z讓L(θ)最大。那我們也許會想,你就是多了一個未知的變量而已啊,我也可以分別對未知的θ和z分別求偏導,再令其等於0,求解出來不也一樣嗎?
---------------------
作者:zouxy09
來源:CSDN
原文:https://blog.csdn.net/zouxy09/article/details/8537620
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!

本質上我們是需要最大化(1)式(對(1)式,我們回憶下聯合概率密度下某個變量的邊緣概率密度函數的求解,注意這里z也是隨機變量。對每一個樣本i的所有可能類別z求等式右邊的聯合概率密度函數和,也就得到等式左邊為隨機變量x的邊緣概率密度),也就是似然函數,但是可以看到里面有“和的對數”,求導后形式會非常復雜(自己可以想象下log(f1(x)+ f2(x)+ f3(x)+…)復合函數的求導),所以很難求解得到未知參數z和θ。那OK,我們可否對(1)式做一些改變呢?我們看(2)式,(2)式只是分子分母同乘以一個相等的函數,還是有“和的對數”啊,還是求解不了,那為什么要這么做呢?咱們先不管,看(3)式,發現(3)式變成了“對數的和”,那這樣求導就容易了。我們注意點,還發現等號變成了不等號,為什么能這么變呢?這就是Jensen不等式的大顯神威的地方。
---------------------
作者:zouxy09
來源:CSDN
原文:https://blog.csdn.net/zouxy09/article/details/8537620
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!
