排序算法是測試開發技術面試中的常考題目,本文用動畫圖解面試必會十大排序算法,由淺入深、形象記憶,再也忘不掉。
排序基礎知識
排序的定義
排序,就是重新排列表中的元素,使表中的元素滿足按關鍵字遞增或遞減的過程。為了査找方便,通常要求計算機中的表是按關鍵字有序的。
排序的確切定義如下:
輸入: n個記錄 R1,R2,R3…Rn, 對應的關鍵字為 K1,K2,K3…Kn
輸出: 輸入序列的一個重排R1’,R2’,R3’…Rn’, 使得有K1’ ≤ K2’ ≤ K3’… ≤ Kn’ (其中 ≤可以換成其它的比較大小符號)。
算法的穩定性:
若待排序表中有兩個元素 Ri 和 Rj,其對應的關鍵字 keyi = kcyj , 且在排序前 Ri 在 Rj 的前面。使用某一排序算法排序后,Ri 仍然在
Rj 的前面盡的前面,則稱這個排序算法是穩定的。否則稱排序算法是不穩定的。
需要注意的是,算法是否具有穩定性並不能衡量—個算法的優劣,它主要足對算法的性質進行描述。只需舉出一組關徤字的實例,即可說明一個算法是不穩定的。
時間復雜度:[1] (來自百度百科)
算法中基本操作重復執行的次數是問題規模n的某個函數,用 T(n) 表示,若有某個輔助函數 f(n) ,使得 T(n)/f(n)
的極限值(當n趨近於無窮大時)為不等於零的常數,則稱 f(n) 是 T(n) 的同數量級函數。記作 T(n)=O(f(n)) ,稱 O(f(n))
為算法的漸進時間復雜度,簡稱時間復雜度。
分析:隨着模塊n的增大,算法執行的時間的增長率和 f(n) 的增長率成正比,所以 f(n) 越小,算法的時間復雜度越低,算法的效率越高。
在計算時間復雜度的時候,先找出算法的基本操作,然后根據相應的各語句確定它的執行次數,再找出 T(n)
的同數量級(它的同數量級有以下:1,log2n,n,n logn ,n的平方,n的三次方,2的n次方,n!),找出后,f(n) = 該數量級,若
T(n) / f(n) 求極限可得到一常數c,則時間復雜度T(n) = O(f(n))
空間復雜度:[2] (來自百度百科)
類似於時間復雜度的討論,一個算法的空間復雜度 S(n) 定義為該算法所耗費的存儲空間,它也是問題規模n的函數。漸近空間復雜度也常常簡稱為空間復雜度。
空間復雜度(SpaceComplexity)是對一個算法在運行過程中臨時占用存儲空間大小的量度。一個算法在計算機存儲器上所占用的存儲空間,包括存儲算法本身所占用的存儲空間,算法的輸入輸出數據所占用的存儲空間和算法在運行過程中臨時占用的存儲空間這三個方面。
算法的輸入輸出數據所占用的存儲空間是由要解決的問題決定的,是通過參數表由調用函數傳遞而來的,它不隨本算法的不同而改變。存儲算法本身所占用的存儲空間與算法書寫的長短成正比,要壓縮這方面的存儲空間,就必須編寫出較短的算法。
算法在運行過程中臨時占用的存儲空間隨算法的不同而異,有的算法只需要占用少量的臨時工作單元,而且不隨問題規模的大小而改變,我們稱這種算法是“就地"進行的,是節省存儲的算法,有的算法需要占用的臨時工作單元數與解決問題的規模
n 有關,它隨着n的增大而增大,當n較大時,將占用較多的存儲單元,例如快速排序和歸並排序算法就屬於這種情況。
算法的分類可以按照是否是比較類的算法來分類,也可以按照排序過程中數據是否都存在於內存中來分類:
如下:
按照內部排序和外部排序分類:
按照是否為比較類的排序來分:
算法時間復雜度
1. 插入排序(Insertion Sort)
插入排序(Insertion-
Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從后向前掃描,找到相應位置並插入。
算法描述
一般來說,插入排序都采用in-place在數組上實現。具體算法描述如下:
-
從第一個元素開始,該元素可以認為已經被排序;
-
取出下一個元素,在已經排序的元素序列中從后向前掃描;
-
如果該元素(已排序)大於新元素,將該元素移到下一位置;
-
重復步驟3,直到找到已排序的元素小於或者等於新元素的位置;
-
將新元素插入到該位置后;
-
重復步驟2~5。
動圖演示
插入排序
C代碼實現
function insertionSort(arr) {
var len = arr.length;
var preIndex, current;
for (var i = 1; i < len; i++) {
preIndex = i - 1;
current = arr[i];
while (preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex + 1] = arr[preIndex];
preIndex--;
}
arr[preIndex + 1] = current;
}
return arr;
}
算法分析
插入排序在實現上,通常采用in-
place排序(即只需用到O(1)的額外空間的排序),因而在從后向前掃描過程中,需要反復把已排序元素逐步向后挪位,為最新元素提供插入空間。
2. 希爾排序
1959年Shell發明,第一個突破O(n2)的排序算法,是簡單插入排序的改進版。它與插入排序的不同之處在於,它會優先比較距離較遠的元素。希爾排序又叫縮小增量排序。
算法描述
先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,具體算法描述:
-
選擇一個增量序列t1,t2,…,tk,其中ti > tj,tk=1;
-
按增量序列個數k,對序列進行k 趟排序;
-
每趟排序,根據對應的增量ti,將待排序列分割成若干長度為m 的子序列,分別對各子表進行直接插入排序。僅增量因子為1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。
動圖演示
shell排序
C代碼實現
function shellSort(arr) {
var len = arr.length;
for (var gap = Math.floor(len / 2); gap > 0; gap = Math.floor(gap / 2)) {
// 注意:這里和動圖演示的不一樣,動圖是分組執行,實際操作是多個分組交替執行
for (var i = gap; i < len; i++) {
var j = i;
var current = arr[i];
while (j - gap >= 0 && current < arr[j - gap]) {
arr[j] = arr[j - gap];
j = j - gap;
}
arr[j] = current;
}
}
return arr;
}
算法分析
希爾排序是基於插入排序的以下兩點性質而提出改進方法的:
-
插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率
-
但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位
時間復雜度:最壞情況下為O(n^2),平均時間復雜度為O(nlogn);
空間復雜度:歸並排序需要一個大小為1的臨時存儲空間用以保存合並序列,所以空間復雜度為O(1);
算法穩定性:從上面圖片中可以看出,數字5在排序后交換了位置,所以它是不穩定的算法。
3. 選擇排序(Selection Sort)
選擇排序(Selection-
sort)是一種簡單直觀的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續尋找最小(大)元素,然后放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。
算法描述
n個記錄的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。具體算法描述如下:
-
初始狀態:無序區為R[1…n],有序區為空;
-
第i趟排序(i=1,2,3…n-1)開始時,當前有序區和無序區分別為R[1…i-1]和R(i…n)。該趟排序從當前無序區中-選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1…i]和R[i+1…n)分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區;
-
n-1趟結束,數組有序化了。
動圖演示
選擇排序
C語言實現
function selectionSort(arr) {
var len = arr.length;
var minIndex, temp;
for (var i = 0; i < len - 1; i++) {
minIndex = i;
for (var j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) { // 尋找最小的數
minIndex = j; // 將最小數的索引保存
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
return arr;
}
算法分析
表現最穩定的排序算法之一,因為無論什么數據進去都是O(n2)的時間復雜度,所以用到它的時候,數據規模越小越好。唯一的好處可能就是不占用額外的內存空間了吧。理論上講,選擇排序可能也是平時排序一般人想到的最多的排序方法了吧。
4. 堆排序
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
算法描述
-
將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆為初始的無序區;
-
將堆頂元素R[1]與最后一個元素R[n]交換,此時得到新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且滿足R[1,2…n-1]<=R[n];
-
由於交換后新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,……Rn-1)調整為新堆,然后再次將R[1]與無序區最后一個元素交換,得到新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重復此過程直到有序區的元素個數為n-1,則整個排序過程完成。
動圖演示
堆排序
代碼實現:
var len; // 因為聲明的多個函數都需要數據長度,所以把len設置成為全局變量
function buildMaxHeap(arr) { // 建立大頂堆
len = arr.length;
for (var i = Math.floor(len/2); i >= 0; i--) {
heapify(arr, i);
}
}
function heapify(arr, i) { // 堆調整
var left = 2 * i + 1,
right = 2 * i + 2,
largest = i;
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest);
}
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function heapSort(arr) {
buildMaxHeap(arr);
for (var i = arr.length - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0);
}
return arr;
}
算法分析:
堆排序是一種選擇排序,整體主要由構建初始堆+交換堆頂元素和末尾元素並重建堆兩部分組成。其中構建初始堆經推導復雜度為O(n),在交換並重建堆的過程中,需交換n-1次,而重建堆的過程中,根據完全二叉樹的性質,[log2(n-1),log2(n-2)…1]逐步遞減,近似為nlogn。所以堆排序時間復雜度一般認為就是O(nlogn)級。
5. 冒泡排序
冒泡排序是一種簡單的排序算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個算法的名字由來是因為越小的元素會經由交換慢慢“浮”到數列的頂端。
算法描述
-
比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
-
對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最后一對,這樣在最后的元素應該會是最大的數;
-
針對所有的元素重復以上的步驟,除了最后一個;
-
重復步驟1~3,直到排序完成。
動圖演示
冒泡排序
C語言實現
function bubbleSort(arr) {
var len = arr.length;
for (var i = 0; i < len - 1; i++) {
for (var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j+1]) { // 相鄰元素兩兩對比
var temp = arr[j+1]; // 元素交換
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
算法分析
若文件的初始狀態是正序的,一趟掃描即可完成排序。所需的關鍵字比較次數C和記錄移動次數M均達到最小值:Cmin = N - 1, Mmin =
0。所以,冒泡排序最好時間復雜度為O(N)。
若初始文件是反序的,需要進行 N -1 趟排序。每趟排序要進行 N - i 次關鍵字的比較(1 ≤ i ≤ N -
1),且每次比較都必須移動記錄三次來達到交換記錄位置。在這種情況下,比較和移動次數均達到最大值:
Cmax = N(N-1)/2 = O(N2)
Mmax = 3N(N-1)/2 = O(N2)
冒泡排序的最壞時間復雜度為O(N2)。因此,冒泡排序的平均時間復雜度為O(N2)。
6. 快速排序
快速排序的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。
算法描述
快速排序使用分治法來把一個串(list)分為兩個子串(sub-lists)。具體算法描述如下:
-
從數列中挑出一個元素,稱為 “基准”(pivot);
-
重新排序數列,所有元素比基准值小的擺放在基准前面,所有元素比基准值大的擺在基准的后面(相同的數可以到任一邊)。在這個分區退出之后,該基准就處於數列的中間位置。這個稱為分區(partition)操作;
-
遞歸地(recursive)把小於基准值元素的子數列和大於基准值元素的子數列排序。
動圖演示
快速排序
C語言實現
function quickSort(arr, left, right) {
var len = arr.length,
partitionIndex,
left = typeof left != 'number' ? 0 : left,
right = typeof right != 'number' ? len - 1 : right;
if (left < right) {
partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex-1);
quickSort(arr, partitionIndex+1, right);
}
return arr;
}
function partition(arr, left ,right) { // 分區操作
var pivot = left, // 設定基准值(pivot)
index = pivot + 1;
for (var i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index-1;
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
算法分析:
當數據有序時,以第一個關鍵字為基准分為兩個子序列,前一個子序列為空,此時執行效率最差。
而當數據隨機分布時,以第一個關鍵字為基准分為兩個子序列,兩個子序列的元素個數接近相等,此時執行效率最好。
所以,數據越隨機分布時,快速排序性能越好;數據越接近有序,快速排序性能越差。
7. 歸並排序(Merge Sort)
歸並排序是建立在歸並操作上的一種有效的排序算法。該算法是采用分治法(Divide and
Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為2-路歸並。
算法描述
-
把長度為n的輸入序列分成兩個長度為n/2的子序列;
-
對這兩個子序列分別采用歸並排序;
-
將兩個排序好的子序列合並成一個最終的排序序列。
動圖演示
歸並排序
C語言實現
function mergeSort(arr) {
var len = arr.length;
if (len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right) {
var result = [];
while (left.length>0 && right.length>0) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
算法分析
歸並排序是一種穩定的排序方法。和選擇排序一樣,歸並排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是O(nlogn)的時間復雜度。代價是需要額外的內存空間。
8. 計數排序
計數排序不是基於比較的排序算法,其核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。
算法描述
-
找出待排序的數組中最大和最小的元素;
-
統計數組中每個值為i的元素出現的次數,存入數組C的第i項;
-
對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
-
反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1。
動圖演示
計數排序
C語言實現
function countingSort(arr, maxValue) {
var bucket = new Array(maxValue + 1),
sortedIndex = 0;
arrLen = arr.length,
bucketLen = maxValue + 1;
for (var i = 0; i < arrLen; i++) {
if (!bucket[arr[i]]) {
bucket[arr[i]] = 0;
}
bucket[arr[i]]++;
}
for (var j = 0; j < bucketLen; j++) {
while(bucket[j] > 0) {
arr[sortedIndex++] = j;
bucket[j]--;
}
}
return arr;
}
算法分析
計數排序是一個穩定的排序算法。當輸入的元素是 n 個 0到 k
之間的整數時,時間復雜度是O(n+k),空間復雜度也是O(n+k),其排序速度快於任何比較排序算法。當k不是很大並且序列比較集中時,計數排序是一個很有效的排序算法。
9. 基數排序
基數排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序。最后的次序就是高優先級高的在前,高優先級相同的低優先級高的在前。
算法描述
-
取得數組中的最大數,並取得位數;
-
arr為原始數組,從最低位開始取每個位組成radix數組;
-
對radix進行計數排序(利用計數排序適用於小范圍數的特點);
動圖演示
基數排序
C語言實現
var counter = [];
function radixSort(arr, maxDigit) {
var mod = 10;
var dev = 1;
for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
for(var j = 0; j < arr.length; j++) {
var bucket = parseInt((arr[j] % mod) / dev);
if(counter[bucket]==null) {
counter[bucket] = [];
}
counter[bucket].push(arr[j]);
}
var pos = 0;
for(var j = 0; j < counter.length; j++) {
var value = null;
if(counter[j]!=null) {
while ((value = counter[j].shift()) != null) {
arr[pos++] = value;
}
}
}
}
return arr;
}
算法分析
基數排序基於分別排序,分別收集,所以是穩定的。但基數排序的性能比桶排序要略差,每一次關鍵字的桶分配都需要O(n)的時間復雜度,而且分配之后得到新的關鍵字序列又需要O(n)的時間復雜度。假如待排數據可以分為d個關鍵字,則基數排序的時間復雜度將是O(d*2n)
,當然d要遠遠小於n,因此基本上還是線性級別的。
基數排序的空間復雜度為O(n+k),其中k為桶的數量。一般來說n>>k,因此額外空間需要大概n個左右。
10. 桶排序
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。桶排序 (Bucket
sort)的工作的原理:假設輸入數據服從均勻分布,將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續使用桶排序進行排)。
算法描述
-
設置一個定量的數組當作空桶;
-
遍歷輸入數據,並且把數據一個一個放到對應的桶里去;
-
對每個不是空的桶進行排序;
-
從不是空的桶里把排好序的數據拼接起來。
動圖演示
桶排序
C語言實現
function bucketSort(arr, bucketSize) {
if (arr.length === 0) {
return arr;
}
var i;
var minValue = arr[0];
var maxValue = arr[0];
for (i = 1; i < arr.length; i++) {
if (arr[i] < minValue) {
minValue = arr[i]; // 輸入數據的最小值
} else if (arr[i] > maxValue) {
maxValue = arr[i]; // 輸入數據的最大值
}
}
// 桶的初始化
var DEFAULT_BUCKET_SIZE = 5; // 設置桶的默認數量為5
bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
var buckets = new Array(bucketCount);
for (i = 0; i < buckets.length; i++) {
buckets[i] = [];
}
// 利用映射函數將數據分配到各個桶中
for (i = 0; i < arr.length; i++) {
buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
}
arr.length = 0;
for (i = 0; i < buckets.length; i++) {
insertionSort(buckets[i]); // 對每個桶進行排序,這里使用了插入排序
for (var j = 0; j < buckets[i].length; j++) {
arr.push(buckets[i][j]);
}
}
return arr;
}
算法分析
桶排序最好情況下使用線性時間O(n),桶排序的時間復雜度,取決與對各個桶之間數據進行排序的時間復雜度,因為其它部分的時間復雜度都為O(n)。很顯然,桶划分的越小,各個桶之間的數據越少,排序所用的時間也會越少。但相應的空間消耗就會增大。
(end)
本文為「maintain001」原創文章,遵循 CC 4.0 BY-SA 版權協議,原文鏈接:
算法面試群
掃碼加小助手微信,回復「面試」,可加入測試開發面試群。
加小助手,回復「 面試 」
群內交流 BAT 大廠測試開發工程師面試經驗,同步高薪 Offer 信息,並不定期組織名企測試經理、測試高工大咖分享,以及其他福利。
- 關注我們 -
在霍格沃茲測試學院
與最優秀的測試開發工程師並肩
往期推薦
-通關這 8 道面試題的測試工程師,年薪都在 30W+ 以上!
-一道有趣的大廠測試面試題,你能用 Python or Shell 解答嗎?
-測試開發真題|測試老兵進階突破,成功拿下大廠 P7 Offer!
** ** ** ** 點一下好看,就少一個 Bug!********
來霍格沃茲測試開發學社,學習更多軟件測試與測試開發的進階技術,知識點涵蓋web自動化測試 app自動化測試、接口自動化測試、測試框架、性能測試、安全測試、持續集成/持續交付/DevOps,測試左移、測試右移、精准測試、測試平台開發、測試管理等內容,課程技術涵蓋bash、pytest、junit、selenium、appium、postman、requests、httprunner、jmeter、jenkins、docker、k8s、elk、sonarqube、jacoco、jvm-sandbox等相關技術,全面提升測試開發工程師的技術實力
QQ交流群:484590337
公眾號 TestingStudio
點擊獲取更多信息