\(\mathbf{{\large {\color{Red} {歡迎到學科網下載資料學習}} } }\)【高分突破系列】 高二數學上學期同步知識點剖析精品講義!
\(\mathbf{{\large {{\color{Red} {跟貴哥學數學,so \quad easy!}} }}}\)
選擇性必修第一冊同步提高,難度4顆星!
模塊導圖

知識剖析
利用空間向量法求距離問題
(1)點\(A、B\)間的距離
(2)點\(Q\)到直線\(l\) 距離
若\(Q\)為直線\(l\)外的一點,\(P\)在直線上,\(\vec{a}\)為直線\(l\)的方向向量,\(\vec{b}=\overrightarrow{P Q}\),
則點\(Q\)到直線\(l\)距離為\(d=\dfrac{1}{|\vec{a}|} \sqrt{(|\vec{a}||\vec{b}|)^{2}-(\vec{a} \cdot \vec{b})^{2}}\).
公式推導
如圖,\(d=|\vec{b}| \sin \theta=|\vec{b}| \sqrt{1-\cos ^{2} \theta}\)\(=|\vec{b}| \sqrt{1-\left(\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)^{2}}=\dfrac{1}{|\vec{a}|} \sqrt{(|\vec{a}||\vec{b}|)^{2}-(\vec{a} \cdot \vec{b})^{2}}\)
(3)點\(Q\)到平面\(α\)的距離
若點\(Q\)為平面\(α\)外一點,點\(M\)為平面\(α\)內任一點,平面\(α\)的法向量為\(\vec{n}\),則\(Q\)到平面\(α\)的距離就等於\(\overrightarrow{M Q}\)在法向量\(\vec{n}\)方向上的投影的絕對值,即\(d=\dfrac{|\vec{n} \cdot \overrightarrow{M Q}|}{|\vec{n}|}\).
公式推導
如圖,\(d=|\overrightarrow{M Q}| \sin \alpha=|\overrightarrow{M Q}||\cos \langle\vec{n}, \overrightarrow{M Q}\rangle|\)\(=|\overrightarrow{M Q}| \cdot \dfrac{|\vec{n} \cdot \overrightarrow{M Q}|}{|\vec{n}||\overrightarrow{M Q}|}=\dfrac{|\vec{n} \cdot \overrightarrow{M Q}|}{|\vec{n}|}\).
(4)直線\(a\)平面\(α\)之間的距離
當一條直線和一個平面平行時,直線上的各點到平面的距離相等.由此可知,直線到平面的距離可轉化為求直線上任一點到平面的距離,即轉化為點面距離.
(5) 平面間的距離
利用兩平行平面間的距離處處相等,可將兩平行平面間的距離轉化為求點面距離.
經典例題
【題型一】點到點的距離
【典題1】正方體\(ABCD-A_1 B_1 C_1 D_1\)的棱長為\(1\),動點\(M\)在線段\(CC_1\)上,動點\(P\)在平面\(A_1 B_1 C_1 D_1\)上,且\(AP⊥\)平面\(MBD_1\).
(1)當點\(M\)與點\(C\)重合時,線段\(AP\)的長度為\(\underline{\quad \quad}\);
(2)線段\(AP\)長度的最小值為\(\underline{\quad \quad}\).
【解析】(1)以\(D\)為原點,\(DA\)為\(x\)軸,\(DC\)為\(y\)軸,\(DD_1\)為\(z\)軸,建立空間直角坐標系,

設\(P(a ,b ,1)\),當點\(M\)與\(C\)重合時,\(M(0 ,1 ,0)\),\(B(1 ,1 ,0)\),\(D_1 (0 ,0 ,1)\),\(A(1 ,0 ,0)\)
\(\overrightarrow{A P}=(a-1, b, 1)\),\(\overrightarrow{B D_{1}}=(-1,-1,1)\),\(\overrightarrow{M D_{1}}=(0,-1,1)\),
\(∵AP⊥\)平面\(MBD_1\).
\(\therefore\left\{\begin{array}{l} \overrightarrow{A P} \cdot \overrightarrow{B D_{1}}=1-a-b+1=0 \\ \overrightarrow{A P} \cdot \overrightarrow{M D_{1}}=-b+1=0 \end{array}\right.\),解得\(a=1\),\(b=1\),
\(\therefore \overrightarrow{A P}=(0,1,1)\),
\(∴\)線段\(AP\)的長度為\(|\overrightarrow{A P}|=\sqrt{0+1+1}=\sqrt{2}\).
(2)設\(CM=t∈[0 ,1]\),則\(M(0 ,1 ,t)\),\(B(1 ,1 ,0)\),\(D_1 (0 ,0 ,1)\),
\(\overrightarrow{A P}=(a-1, b, 1)\),\(\overrightarrow{B D_{1}}=(-1,-1,1)\),\(\overrightarrow{M D_{1}}=(0,-1,1-t)\),
\(∵AP⊥\)平面\(MBD_1\).
\(\therefore\left\{\begin{array}{l} \overrightarrow{A P} \cdot \overrightarrow{B D_{1}}=1-a-b+1=0 \\ \overrightarrow{A P} \cdot \overrightarrow{M D_{1}}=-b+1-t=0 \end{array}\right.\),
解得\(a=1+t\),\(b=1-t\),
\(∴\overrightarrow{A P}=(t, 1-t, 1)\),
\(\therefore|\overrightarrow{A P}|=\sqrt{t^{2}+(1-t)^{2}+1}=\sqrt{2\left(t-\dfrac{1}{2}\right)^{2}+\dfrac{3}{2}}\),
\(∴\)當\(t=\dfrac{1}{2}\),即\(M\)是\(CC_1\)中點時,線段\(AP\)長度取最小值為\(\dfrac{\sqrt{6}}{2}\).
【點撥】
① 線段\(AP\)的長度為\(|\overrightarrow{A P}|\),利用空間向量法使得幾何問題“代數化”,較幾何法更容易處理這動點問題;
② 本題的變化源頭是“\(M\)的位置”,在第二問求\(AP\)長度的最小值,在引入參數中設\(CM=t\),較為合理.
鞏固練習
1(★)已知\(M\)為\(z\)軸上一點,且點\(M\)到點\(A(-1 ,0 ,1)\)與點\((1 ,-3 ,2)\)的距離相等,則點\(M\)的坐標為\(\underline{\quad \quad}\).
2(★)已知空間直角坐標系\(O-xyz\)中有一點\(A(-1 ,-1 ,2)\),點\(B\)是\(xOy\)平面內的直線\(x+y=1\)上的動點,則\(A\),\(B\)兩點的最短距離是\(\underline{\quad \quad}\).
3(★)如圖,在空間直角坐標系中,有一棱長為\(2\)的正方體\(ABCD-A_1 B_1 C_1 D_1\),\(A_1 C\)的中點\(E\)到\(AB\)的中點\(F\)的距離為\(\underline{\quad \quad}\).
4(★)空間點\(A(x ,y ,z)\),\(O(0 ,0 ,0)\),\(B(\sqrt{2}, \sqrt{3}, 2)\),若\(|AO|=1\),則\(|AB|\)的最小值為\(\underline{\quad \quad}\).
答案
1.\((0 ,0 ,6)\)
2.\(\dfrac{\sqrt{34}}{2}\)
3.\(\sqrt{2}\)
4.\(2\)
【題型二】點到線的距離
【典題1】\(P\)為矩形\(ABCD\)所在平面外一點,\(PA⊥\)平面\(ABCD\),若已知\(AB=3\),\(AD=4\),\(PA=1\),則點\(P\)到\(BD\)的距離為\(\underline{\quad \quad}\).
【解析】\({\color{Red}{方法一 }}\)
\(∵\)矩形\(ABCD\)中,\(AB=3\),\(AD=4\),
\(\therefore B D=\sqrt{9+16}=5\),
過\(A\)作\(AE⊥BD\),交\(BD\)於\(E\),連結\(PE\),
\(∵PA⊥\)平面\(ABCD\),\(∴PA⊥BD\),
又\(AE⊥BD\)\(∴BD⊥\)平面\(PAE\),
\(∴PE⊥BD\),即\(PE\)是點\(P\)到\(BD\)的距離,
\(\because \dfrac{1}{2} \times A B \times A D=\dfrac{1}{2} \times B D \times A E\),
\(\therefore A E=\dfrac{A B \times A D}{B D}=\dfrac{12}{5}\),
\(\therefore P E=\sqrt{P A^{2}+E^{2}}=\sqrt{1+\dfrac{144}{25}}=\dfrac{13}{5}\),
\(∴\)點\(P\)到\(BD\)的距離為\(\dfrac{13}{5}\).
\({\color{Red}{方法二 }}\) 依題意可知,\(PA\)、\(AB\)、\(AD\)三線兩兩垂直,
如圖建立空間直角坐標系
\(∴P(0 ,0 ,1)\),\(B(3 ,0 ,0)\),\(D(0 ,4 ,0)\),
\(\therefore \overrightarrow{B P}=(-3,0,1)\),\(\overrightarrow{B D}=(-3,4,0)\),
\(∴\)點\(P\)到\(BD\)的距離為\(d=\dfrac{1}{|\overrightarrow{B D}|} \sqrt{(|\overrightarrow{B D}||\overrightarrow{B P}|)^{2}-(\overrightarrow{B D} \cdot \overrightarrow{B P})^{2}}\)\(=\dfrac{1}{5} \cdot \sqrt{250-81}=\dfrac{13}{5}\)
【點撥】
① 方法一是幾何法,找到點\(P\)到\(BD\)的距離\(PE\); 方法二是向量法,利用點到直線距離公式\(d=\dfrac{1}{|\overrightarrow{B D}|} \sqrt{(|\overrightarrow{B D}||\overrightarrow{B P}|)^{2}-(\overrightarrow{B D} \cdot \overrightarrow{B P})^{2}} \quad (*)\);
② 向量法中的公式\((*)\)有些復雜,不建議直接使用,還不如使用其推導方法
求點\(P\)到直線\(BD\)的距離
(1) 求出直線\(BD\)的方向向量\(\overrightarrow{B D}=(-3,4,0)\);
(2) 在直線\(BD\)上找一點\(B\),求出其與點\(P\)的向量\(\overrightarrow{B P}=(-3,0,1)\);
(3) 求兩向量夾角余弦值,\(\cos <\overrightarrow{B P}, \overrightarrow{B D}>=\dfrac{\overrightarrow{B P} \cdot \overrightarrow{B D}}{|\overrightarrow{B P}||\overrightarrow{B D}|}=\dfrac{9}{5 \sqrt{10}}\);
(4) 求點\(P\)到\(BD\)的距離,\(d=|\overrightarrow{B P}| \sqrt{1-\cos ^{2}<\overrightarrow{B P}}, \overrightarrow{B D}>=\dfrac{13}{5}\).
鞏固練習
1(★)已知直線\(l\)的方向向量為\(\vec{a}=(-1,0,1)\),點\(A(1 ,2 ,-1)\)在\(l\)上,則點\(P(2 ,-1 ,2)\)到\(l\)的距離為\(\underline{\quad \quad}\) .
2(★)已知直線\(l\)過定點\(A(2 ,3 ,1)\),且\(\vec{n}=(0,1,1)\)為其一個方向向量,則點\(P(4,3,2)\)到直線\(l\)的距離為\(\underline{\quad \quad}\) .
3(★★)已知\(A(0 ,0 ,2)\),\(B(1 ,0 ,2)\),\(C(0 ,2 ,0)\),則點\(A\)到直線\(BC\)的距離為\(\underline{\quad \quad}\).
答案
1.\(\sqrt{17}\)
2.\(\dfrac{3 \sqrt{2}}{2}\)
3.\(\dfrac{2 \sqrt{2}}{3}\)
【題型三】點到面的距離
【典題1】如圖,四棱錐\(P-ABCD\)中,底面\(ABCD\)為菱形,\(∠ABC=60^°\),\(PA⊥\)平面\(ABCD\),\(AB=2\),\(P A=\dfrac{2 \sqrt{3}}{3}\),\(E\)為\(BC\)中點,\(F\)在棱\(PD\)上,\(AF⊥PD\),點\(B\)到平面\(AEF\)的距離為\(\underline{\quad \quad}\).
【解析】\(∵\)底面\(ABCD\)為菱形,\(∠ABC=60°\),\(E\)為\(BC\)中點,
\(∴AE⊥AD\),
又\(PA⊥\)平面\(ABCD\),\(∴PA⊥AD\),\(PA⊥AE\),
\(∴\)以\(A\)為原點,\(AE\)為\(x\)軸,\(AD\)為\(y\)軸,\(AP\)為\(z\)軸,建立空間直角坐標系,
\(∴A(0 ,0 ,0)\),\(B(\sqrt{3},-1,0)\)\(E(\sqrt{3}, 0,0)\),\(P\left(0,0, \dfrac{2 \sqrt{3}}{3}\right)\),\(D(0 ,2 ,0)\),
\(\therefore \overrightarrow{A B}=(\sqrt{3},-1,0)\),\(\overrightarrow{A E}=(\sqrt{3}, 0,0)\),
在\(Rt∆PAD\)中,易得\(∠D=30^°\),\(\therefore A F=\dfrac{A D}{2}=1\),
過點\(F\)作\(FH⊥AD\)交\(AD\)於\(H\),
易得\(∠1=30^°\),\(\therefore A H=\dfrac{1}{2}\),\(F H=\dfrac{\sqrt{3}}{2}\),
\(\therefore F\left(0, \dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\),\(\overrightarrow{A F}=\left(0, \dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\),
設平面\(AEF\)的法向量\(\vec{n}=(x, y, z)\),
則\(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A E}=\sqrt{3} x=0 \\ \vec{n} \cdot \overrightarrow{A F}=\dfrac{1}{2} y+\dfrac{\sqrt{3}}{2} z=0 \end{array}\right.\),
取\(y=\sqrt{3}\),得\(\vec{n}=(0, \sqrt{3},-1)\),
\(∴\)點\(B\)到平面\(AEF\)的距離為\(d=\dfrac{|\vec{n} \cdot \overrightarrow{A B}|}{|\vec{n}|}=\dfrac{\sqrt{3}}{2}\).
【點撥】
① 求點\(F\)的坐標,解題中幾何法較易求得,這需要審題中注意各量之間的關系;也可以用代數法求得,如下:
設\(F(0 ,b ,c)\),\(\overrightarrow{P F}=\lambda \overrightarrow{P D}\),
則\(\left(0, b, c-\dfrac{2 \sqrt{3}}{3}\right)=\left(0,2 \lambda,-\dfrac{2 \sqrt{3}}{3} \lambda\right)\),
解得\(b=2λ\),\(C=\dfrac{2 \sqrt{3}}{3}-\dfrac{2 \sqrt{3}}{3} \lambda\),
\(\therefore \overrightarrow{A F}=\left(0,2 \lambda, \dfrac{2 \sqrt{3}}{3}-\dfrac{2 \sqrt{3}}{3} \lambda\right)\),\(\overrightarrow{P D}=\left(0,2,-\dfrac{2 \sqrt{3}}{3}\right)\),
\(∵AF⊥PD\),\(\therefore \overrightarrow{A F} \cdot \overrightarrow{P D}=4 \lambda-\dfrac{4}{3}+\dfrac{4}{3} \lambda=0\),
解得\(\lambda=\dfrac{1}{4}\),\(\therefore F\left(0, \dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\);
② 求點\(B\)到平面\(AEF\)的距離的解題步驟
(1) 求平面\(AEF\)的法向量\(\vec{n}=(0, \sqrt{3},-1)\);
(2) 在平面\(AEF\)內選一點\(A\),求其與點\(B\)的向量\(\overrightarrow{A B}=(\sqrt{3},-1,0)\);
(3) 利用公式\(d=\dfrac{|\vec{n} \cdot \overrightarrow{A B}|}{|\vec{n}|}\)(向量\(\vec{n}\)在法向量\(\vec{n}\)上的投影絕對值)求所求距離,\(d=\dfrac{|\vec{n} \cdot \overrightarrow{A B}|}{|\vec{n}|}=\dfrac{\sqrt{3}}{2}\).
【典題2】已知\(E\),\(F\)分別是正方形\(ABCD\)邊\(AD\),\(AB\)的中點,\(EF\)交\(AC\)於\(P\),\(GC\)垂直於\(ABCD\)所在平面.
(1)求證:\(EF⊥\)平面\(GPC\).
(2)若\(AB=4\),\(GC=2\),求點\(B\)到平面\(EFG\)的距離.
【解析】(1)連接\(BD\)交\(AC\)於\(O\),
\(∵E\),\(F\)是正方形\(ABCD\)邊\(AD\),\(AB\)的中點,\(AC⊥BD\),\(∴EF⊥AC\).
\(∵GC\)垂直於\(ABCD\)所在平面,\(EF⊂\)平面\(ABCD\)\(∴EF⊥GC\)
\(∵AC∩GC=C\),\(∴EF⊥\)平面\(GPC\).
(2) \({\color{Red}{方法一 \quad向量法 }}\)
建立空間直角坐標系\(C-xyz\),則\(G(0 ,0 ,2)\),\(E(4 ,2 ,0)\),\(F(2 ,4 ,0)\),\(B(4 ,0 ,0)\)
\(\therefore \overrightarrow{G E}=(4,2,-2)\),\(\overrightarrow{E F}=(-2,2,0)\)
設面\(GEF\)的法向量\(\vec{n}=(x, y, z)\),
則\(\overrightarrow{G E} \cdot \vec{n}=0\)且\(\overrightarrow{E F} \cdot \vec{n}=0\),
即\(4x+2y-2z=0\)且\(-2x+2y=0\)
取\(x=1\)時,可得\(\vec{n}=(1,1,3)\)
又\(∵\)向量\(\overrightarrow{B E}=(0,2,0)\)
則\(B\)到面\(GEF\)的距離\(d=\dfrac{|\vec{n} \cdot \overrightarrow{B E}|}{|\vec{n}|}=\dfrac{2 \sqrt{11}}{11}\).
\({\color{Red}{方法二 \quad等積法 }}\)
由題意可知\(P C=\dfrac{3}{4} A C=3 \sqrt{2}\),\(P G=\sqrt{P C^{2}+G C^{2}}=\sqrt{22}\),
\(\therefore S_{\Delta E F G}=\dfrac{1}{2} \times P G \times E F=2 \sqrt{11}\),
易得\(S_{\Delta E F B}=\dfrac{1}{2} \times A F \times E B=2\)
\(\therefore V_{B-E F G}=V_{G-E F B}\)
\(\therefore \dfrac{1}{3} \times h \times S_{\Delta E F G}=\dfrac{1}{3} \times G C \times S_{\Delta E F B}\)
\(\therefore h=\dfrac{G C \times S_{\Delta E F B}}{S_{\Delta E F G}}=\dfrac{2 \times 2}{2 \sqrt{11}}=\dfrac{2 \sqrt{11}}{11}\)
\({\color{Red}{方法三 \quad 間接法 }}\)
由題意可知\(P C=\dfrac{3}{4} A C=3 \sqrt{2}\),\(P G=\sqrt{P C^{2}+G C^{2}}=\sqrt{22}\),
\(∵PC=3OP\),
\(∴C\)到面\(GEF\)的距離是\(O\)到面\(GEF\)距離的\(3\)倍,
在\(∆GPC\)中,點\(C\)到邊\(PG\)的高為\(CM\),
又\(∵EF⊥\)平面\(GPC\),\(∴CM⊥\)平面\(EFG\),
\(∴CM\)為\(C\)到面\(GEF\)距離,
在\(∆GPC\)中,可得\(P G \cdot C M=G C \cdot P C \Rightarrow C M=\dfrac{2 \times 3 \sqrt{2}}{\sqrt{22}}=\dfrac{6}{\sqrt{11}}\),
又\(BD∥EF\),可得\(BD∥\)平面\(GEF\),
可得\(B\)到面\(GEF\)的距離等於\(O\)到面\(GEF\)的距離\(\dfrac{1}{3} C M=\dfrac{2}{\sqrt{11}}=\dfrac{2 \sqrt{11}}{11}\).
【點撥】
求點\(A\)到平面\(α\)的距離方法有很多種,
① 直接法:若能確定點\(A\)到平面\(α\)的垂線段當然最好了!
② 向量法:若空間直角坐標系較容易建立,各關鍵點的坐標易求,可考慮向量法;本題中\(GC⊥\)平面\(ABCD\),矩形\(ABCD\)都是有利條件;
③等積法:當相關三棱錐的體積和側面三角形的面積易求,可考慮等積法;本題中的\(V_{G-E F B}\)和\(S_{∆EFB}\)均易求;
④ 間接法:若存在過點\(A\)的直線\(l\)與平面\(α\)平行,可考慮能否在直線\(l\)上找到一點\(B\),而它到平面\(α\)的距離易求些;本題中“求\(B\)到面\(GEF\)的距離”轉化為“求\(O\)到面\(GEF\)的距離”;
【典題3】如圖在四棱錐\(P-ABCD\)中,側面\(PAD⊥\)底面\(ABCD\),側棱\(\text { 夌 } P A=P D=\sqrt{2}\),底面\(ABCD\)為直角梯形,其中\(BC∥AD\),\(AB⊥AD\),\(AD=2AB=2BC=2\),\(O\)為\(AD\)的中點.
(1)求證\(PO⊥\)平面\(ABCD\);
(2)求二面角\(C-PD-A\)夾角的正弦值;
(3)線段\(AD\)上是否存在\(Q\),使得它到平面\(PCD\)的距離為\(\dfrac{\sqrt{3}}{2}\)?若存在,求出\(\dfrac{A Q}{Q D}\)的值;若不存在,說明理由.
【解析】(1)證明\(∵PA=PD\),\(O\)為\(AD\)的中點,\(∴PO⊥AD\),
\(∵\)側面\(PAD⊥\)底面\(ABCD\),側面\(PAD∩\)底面\(ABCD=AD\),
\(∴PO⊥\)平面\(ABCD\).
(2)\(∵\)底面\(ABCD\)為直角梯形,其中\(BC∥AD\),\(AB⊥AD\),\(AD=2AB=2BC=2\),
\(∴OC⊥AD\),又\(PO⊥\)平面\(ABCD\),
\(∴\)以\(O\)為原點,\(OC\)為\(x\)軸,\(OD\)為\(y\)軸,\(OP\)為\(z\)軸,建立空間直角坐標系,
平面\(PAD\)的法向量\(\vec{m}=(1,0,0)\),
\(C(1 ,0 ,0)\),\(D(0 ,1 ,0)\),\(P(0 ,0 ,1)\),\(\overrightarrow{P C}=(1,0,-1)\),\(\overrightarrow{P D}=(0,1,-1)\),
設平面\(PCD\)的法向量\(\vec{n}=(x, y, z)\),
則\(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{P C}=x-z=0 \\ \vec{n} \cdot \overrightarrow{P D}=y-z=0 \end{array}\right.\),取\(x=1\),得\(\vec{n}=(1,1,1)\),
設二面角\(C-PD-A\)夾角為\(θ\),則\(\cos \theta=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{1}{\sqrt{3}}\),
\(\therefore \sin \theta=\sqrt{1-\left(\dfrac{1}{\sqrt{3}}\right)^{2}}=\dfrac{\sqrt{6}}{3}\),
\(∴\)二面角\(C-PD-A\)夾角的正弦值為\(\dfrac{\sqrt{6}}{3}\).
(3)設線段\(AD\)上存在\(Q(0 ,m ,0)\),\(m∈[-1 ,1]\),使得它到平面\(PCD\)的距離為\(\dfrac{\sqrt{3}}{2}\),
\(\therefore \overrightarrow{P Q}=(0, m,-1)\),
\(∴Q\)到平面\(PCD\)的距離\(d=\dfrac{|\overrightarrow{P Q} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{|m-1|}{\sqrt{3}}=\dfrac{\sqrt{3}}{2}\),
解得\(m=-\dfrac{1}{2}\)或\(m=\dfrac{5}{2}\)(舍去),
\(\therefore Q\left(0,-\dfrac{1}{2}, 0\right)\),則\(\dfrac{A Q}{Q D}=\dfrac{\dfrac{1}{2}}{\dfrac{3}{2}}=\dfrac{1}{3}\).
【點撥】立體幾何中問到是否“存在”,可利用“假設法”.
鞏固練習
1(★★)在長方體\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=AD=2\),\(AA_1=1\),則點\(B\)到平面\(D_1 AC\)的距離等於\(\underline{\quad \quad}\).
2(★★)已知平面\(α\)的法向量為\(\vec{n}=(-2,-2,1)\),點\(A(x ,3 ,0)\)在平面\(α\)內,則點\(P(-2 ,1 ,4)\)到平面\(α\)的距離為\(\dfrac{10}{3}\),則\(x=\)\(\underline{\quad \quad}\).
3(★★)如圖,\(ABCD\)是矩形,\(PD⊥\)平面\(ABCD\),\(PD=DC=a\),\(A D=\sqrt{2} a\),\(M\),\(N\)分別是\(AD\)、\(PB\)的中點,求點\(A\)到平面\(MNC\)的距離.
4(★★)如圖,在長方體\(ABCD-A_1 B_1 C_1 D_1\)中,\(AD=AA_1=1\),\(AB=2\),點\(E\)在棱\(AB\)上移動.
(1)證明:\(D_1 E⊥A_1 D\);
(2)當\(E\)為\(AB\)的中點時,求點\(E\)到面\(ACD_1\)的距離.
5(★★★)已知三棱錐\(S-ABC\),滿足\(SA\),\(SB\),\(SC\)兩兩垂直,且\(SA=SB=SC=2\),\(Q\)是三棱錐\(S-ABC\)外接球上一動點,求點\(Q\)到平面\(ABC\)的距離的最大值.
6(★★★)如圖,在三棱錐\(S-ABC\)中,\(△ABC\)是邊長為\(4\)的正三角形,\(S A=S C=2 \sqrt{2}\),\(O\),\(M\)分別為\(AC\)、\(AB\)的中點,\(SO⊥AB\).
(1)證明:\(SO⊥\)平面\(ABC\);
(2)求二面角\(S-CM-A\)的余弦值;
(3)求點\(B\)到平面\(SCM\)的距離.
參考答案
1.\(\dfrac{\sqrt{6}}{3}\)
2.\(-1\)或\(-11\)
3.\(\dfrac{a}{2}\)
4.\((1)\)略\(\text { (2) } \dfrac{1}{3}\)
5.\(\dfrac{4 \sqrt{3}}{3}\)
6.\((1)\)略\(\text { (2) } \dfrac{\sqrt{5}}{5}\)\(\text { (3) } \dfrac{4 \sqrt{5}}{5}\)
【題型四】線到面的距離
【典題1】如圖,已知斜三棱柱\(ABC-A_1 B_1 C_1\),\(∠BCA=90°\),\(AC=BC=2\),\(A_1\)在底面\(ABC\)上的射影恰為\(AC\)的中點\(D\), 又知\(BA_1⊥AC_1\).
(1)求證:\(AC_1⊥\)平面\(A_1 BC\);
(2)求\(CC_1\)到平面\(A_1 AB\)的距離.
【解析】(1)\(∵A_1\)在底面\(ABC\)上的射影為\(AC\)的中點\(D\),
\(∴\)平面\(A_1 ACC_1⊥\)平面\(ABC\),
\(∵BC⊥AC\)且平面\(A_1 ACC_1∩\)平面\(ABC=AC\),
\(∴BC⊥\)平面\(A_1 ACC_1\),
\(∴BC⊥AC_1\),
\(∵AC_1⊥BA_1\)且\(BC∩BA_1=B\),
\(∴AC_1⊥\)平面\(A_1 BC\).
(2)如圖所示,以\(C\)為坐標原點建立空間直角坐標系,
\(∵AC_1⊥\)平面\(A_1 BC\),\(∴AC_1⊥A_1 C\),
\(∴\)四邊形\(A_1 ACC_1\)是菱形,
\(∵D\)是\(AC\)的中點,\(A_1 D⊥AC\)
\(∴∠A_1 AD=60°\),
\(∴A(2 ,0 ,0)\),\(A_{1}(1,0, \sqrt{3})\),\(B(0 ,2 ,0)\),\(C_{1}(-1,0, \sqrt{3})\),
\(\therefore \overrightarrow{A_{1} A}=(1,0,-\sqrt{3})\),\(\overrightarrow{A B}=(-2,2,0)\),
設平面\(A_1 AB\)的法向量\(\vec{n}=(x, y, z)\),
則\(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A_{1} A}=0 \\ \vec{n} \cdot \overrightarrow{A B}=0 \end{array}\right.\),
\(\therefore\left\{\begin{array}{l} x-\sqrt{3} z=0 \\ -2 x+2 y=0 \end{array}\right.\),\(\vec{n}=(\sqrt{3}, \sqrt{3}, 1)\),
\(\because \overrightarrow{C A_{1}}=(2,0,0)\),
\(∴C_1\)到平面\(A_1 AB\)的距離\(d=\dfrac{\left|\overrightarrow{C A_{1}} \cdot \vec{n}\right|}{|\vec{n}|}=\dfrac{2 \sqrt{21}}{7}\).
\(∵CC_1//AA_1\),\(AA_1⊂\)平面\(A_1 AB\),\(CC_1⊄\)平面\(A_1 AB\)
\(∴CC_1//\)平面\(A_1 AB\),
\(∴CC_1\)到平面\(A_1 AB\)的距離等於\(C_1\)到平面\(A_1 AB\)的距離\(\dfrac{2 \sqrt{21}}{7}\).
【點撥】直線到平面的距離問題可轉化為點到平面的距離.
鞏固練習
1(★★)如圖,在棱長為\(1\)的正方體\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)為線段\(A_1 B_1\)的中點,\(F\)為線段\(AB\)的中點.求直線\(FC\)到平面\(AEC_1\)的距離;
2(★★)如圖,在正方體\(ABCD-A_1 B_1 C_1 D_1中\),\(E\)為\(BB_1\)的中點.
(Ⅰ)證明:\(BC_1∥\)平面\(AD_1 E\);
(Ⅱ)求直線\(BC_1\)到平面\(AD_1 E\)的距離;
參考答案
1.\(\dfrac{\sqrt{6}}{6}\)
2.\((1)\)略\(\text { (2) } \dfrac{2}{3}\)
【題型五】面到面的距離
【典題1】正方體\(ABCD-A_1 B_1 C_1 D_1\)的棱長為\(a\),則平面\(AB_1 D_1\)與平面\(BDC_1\)的距離為\(\underline{\quad \quad}\).
【解析】\({\color{Red}{方法一 }}\) 連接\(A_1 C\),與面\(AB_1 D_1\)與面\(BC_1 D\)分別交於\(M\),\(N\).
\(∵CC_1⊥\)平面\(A_1 B_1 C_1 D_1\),\(∴CC_1⊥B_1 D_1\),
又\(∵A_1 C_1⊥B_1 D_1\),
\(∴B_1 D_1⊥\)平面\(A_1 C_1 C\)
\(∴B_1 D_1⊥A_1 C\),
同理可證\(AB_1⊥A_1 C\),
又\(B_1 D_1∩AB_1=B_1\),\(∴A_1 C⊥\)面\(AB_1 D_1\);
同理可證,\(A_1 C⊥\)面\(BC_1 D\).
\(∴MN\)為平面\(AB_1 D_1\)與平面\(BC_1 D\)的距離
\(∵△AB_1 D_1\)為正三角形,邊長為\(\sqrt{2} a\),三棱錐\(A_1-AB_1 D_1\)為正三棱錐,
\(∴M\)為\(△AB_1 D_1\)的中心,\(M A=\dfrac{\sqrt{3}}{3} \times \sqrt{2} a=\dfrac{\sqrt{6}}{3} a\)
\(A_{1} M=\sqrt{A_{1} A^{2}-M A^{2}}=\dfrac{\sqrt{3}}{3} a\),
同理求出\(C N=A_{1} M=\dfrac{\sqrt{3}}{3} a\),
又\(A_{1} C=\sqrt{3} a\),
\(\therefore M N=A_{1} C-A_{1} M-C N=\dfrac{\sqrt{3}}{3} a\).
\({\color{Red}{方法二 }}\) 建立空間直角坐標系如圖.
則\(A(a ,0 ,0)\),\(B(a ,a ,0)\),\(D(0 ,0 ,0)\),\(C_1 (0 ,a ,a)\),\(D_1 (0 ,0 ,a)\),\(B_1 (a ,a ,a)\),
\(\therefore \overrightarrow{A B_{1}}=(0, a, a)\),\(\overrightarrow{A D_{1}}=(-a, 0, a)\),\(\overrightarrow{B C_{1}}=(-a, 0, a)\),\(\overrightarrow{D C_{1}}=(0, a, a)\)
設\(\vec{n}=(x, y, z)\)為平面\(AB_1 D_1\)的法向量,
則\(\left\{\begin{array}{c} \vec{n} \cdot \overrightarrow{A B_{1}}=a(y+z)=0 \\ \vec{n} \cdot \overrightarrow{A D_{1}}=a(-x+z)=0 \end{array}\right.\)得\(\left\{\begin{array}{c} y=-z \\ x=z \end{array}\right.\)
令\(z=1\),則\(\vec{n}=(1,-1,1)\)
\(\because \overrightarrow{A D_{1}} / / \overrightarrow{B C_{1}}\),\(\overrightarrow{A B_{1}} / / \overrightarrow{D C_{1}}\),
\(∴AD_1∥BC_1\),\(AB_1∥DC_1\),\(AD_1∩AB_1=A\),\(DC_1∩BC_1=C_1\),
\(∴\)平面\(AB_1 D_1∥\)平面\(BDC_1\)
\(∴\)平面\(AB_1 D_1\)與平面\(BDC_1\)的距離等於點\(C_1\)到平面\(AB_1 D_1\)的距離\(d\).
\(\because \overrightarrow{C_{1} B_{1}}=(a, 0,0)\),平面\(AB_1 D_1\)的法向量為\(\vec{n}=(1,-1,1)\),
\(\therefore d=\dfrac{\left|\overrightarrow{C_{1} B_{1}} \cdot \vec{n}\right|}{|\vec{n}|}=\dfrac{\sqrt{3}}{3} a\).
【點撥】
① 本題里,正方體中\(M\)、\(N\)把體對角線\(A_1 C\)三等分,即\(A_{1} M=M N=N C=\dfrac{A_{1} C}{3}=\dfrac{\sqrt{3}}{3} a\),這可作為一個結論記住;
② 面面間的距離問題可轉化為點到面的距離.本題中平面\(AB_1 D_1∥\)平面\(BDC_1\), 它們間的距離轉化為點\(C_1\)到平面\(AB_1 D_1\)的距離\(d\).
鞏固練習
1(★★★)直四棱柱\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)為正方形,邊長為\(2\),側棱\(A_1 A=3\),\(M\)、\(N\)分別為\(A_1 B_1\)、\(A_1 D_1\)的中點,\(E\)、\(F\)分別是\(B_1 C_1\)、\(C_1 D_1\)的中點.
(1)求證:平面\(AMN∥\)平面\(EFDB\);
(2)求平面\(AMN\)與平面\(EFDB\)的距離.
參考答案
1.\((1)\)略\(\text { (2) } \dfrac{6 \sqrt{19}}{19}\)