6.3 平面向量的基本定理及坐標表示


\(\mathbf{{\large {\color{Red} {歡迎到學科網下載資料學習}} } }\)
【高分突破系列】數學下學期同步知識點剖析精品講義
\(\mathbf{{\large {{\color{Red} {跟貴哥學數學,so \quad easy!}} }}}\)

必修第二冊同步拔高,難度3顆星!

模塊導圖

知識剖析

平面向量的基本定理

1 平面向量的基本定理
\(\overrightarrow{e_{1}}\)\(\overrightarrow{e_{2}}\)同一平面內的兩個不共線向量, \(\vec{a}\)是該平面內任一向量,則存在唯一實數對$ (λ,μ)$,使 \(\vec{a}=\lambda \overrightarrow{e_{1}}+\mu \overrightarrow{e_{2}}\).
我們把\(\{\vec{e_1},\vec{e_2}\}\)叫做表示這個平面內所有向量的一個基底.
如下圖,\(\vec{a}=\overrightarrow{O M}+\overrightarrow{O N}=\lambda \overrightarrow{e_{1}}+\mu \overrightarrow{e_{2}}\),其中\(\lambda=\dfrac{|O M|}{|O A|}\)\(\mu=\dfrac{|O N|}{|O B|}\).
image.png
\({\color{Red}{PS}}\) 唯一性的解釋
\(\overrightarrow{e_{1}}\)\(\overrightarrow{e_{2}}\)不共線,且\(\lambda_{1} \overrightarrow{e_{1}}+\mu_{1} \overrightarrow{e_{2}}=\lambda_{2} \overrightarrow{e_{1}}+\mu_{2} \overrightarrow{e_{2}}\), 則\(λ_1=λ_2\) ,\(μ_1=μ_2\).

 

2 正交分解及其坐標表示
① 正交分解
把一個向量分解為兩個互相垂直的向量,叫做把向量作正交分解;

如上圖,重力\(G\)分解成平行斜面的力\(F_1\)和垂直於斜面的壓力\(F_2\).

② 向量的坐標表示
在平面內建立直角坐標系,以與\(x\)軸、\(y\)軸方向相同的兩個單位向量\(\vec{i}\) ,\(\vec{j}\)為基底,則平面內的任一向量\(\vec{a}\)表示為\(\vec{a}=x \vec{i}+y \vec{j}=(x, y)\)\((x ,y)\)稱為向量\(\vec{a}\)的坐標,\(\vec{a}=(x, y)\)叫做向量\(\vec{a}\)的坐標表示.
向量\(\vec{a}=(x, y)\),就是以原點\((0,0)\)為起點,點\((x ,y)\)為終點的向量.
 

平面向量數乘運算與數量積的坐標表示

1 坐標運算
\(\vec{a}=\left(x_{1}, y_{1}\right)\) ,\(\vec{b}=\left(x_{2}, y_{2}\right)\),則
\((1)\)向量的模\(|\vec{a}|=\sqrt{x_{1}^{2}+y_{1}^{2}}\)
\((2)\)向量的加減法運算 \(\vec{a}+\vec{b}=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\)\(\vec{a}-\vec{b}=\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\)
\((3)\)\(A(x_1 ,y_1)\)\(B(x_2 ,y_2)\),則\(\overrightarrow{A B}=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)\)
\((4)\)實數與向量的積 \(\lambda \vec{a}=\lambda\left(x_{1}, y_{1}\right)=\left(\lambda x_{1}, \lambda y_{1}\right)\)
\((5)\)數量積\(\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}\)
\((6)\)夾角余弦值\(\cos <\vec{a}, \vec{b}>=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}| \vec{b} \mid}=\dfrac{x_{1} x_{2}+y_{1} y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}} \cdot \sqrt{x_{2}^{2}+y_{2}^{2}}}\)
\({\color{Red}{拓展}}\) 定比分點
線段\(P_1P_2\)的端點\(P_1\)\(P_2\)的坐標分別是\((x_1 ,y_1)\)\((x_2 ,y_2)\),點\(P\)是直線\(P_1 P_2\)上的一點,
\(\overrightarrow{P_{1} P}=\lambda \overrightarrow{P P_{2}}\)時,點\(P\)的坐標是\(\left(\dfrac{x_{1}+\lambda x_{2}}{1+\lambda}, \dfrac{y_{1}+\lambda y_{2}}{1+\lambda}\right)\)

 

2 平面向量位置關系
\(\vec{a}\left(x_{1}, y_{1}\right)\)\(\vec{b}\left(x_{2}, y_{2}\right)\)
\(\vec{a} \| \vec{b} \Leftrightarrow x_{1} y_{2}=x_{2} y_{1}\)
\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0 \Rightarrow x_{1} x_{2}+y_{1} y_{2}=0\).
 

經典例題

【題型一】平面向量的基本定理的理解

【典題1】 如果\(\overrightarrow{e_{1}}\)\(\overrightarrow{e_{2}}\)是平面內一組不共線的向量,那么下列四組向量中,不能作為平面內所有向量的一組基底的是(  )
A.\(\overrightarrow{e_{1}}\)\(\overrightarrow{e_{1}}+\overrightarrow{e_{2}}\)
B.\(\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}\)\(\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}}\)
C.\(\overrightarrow{e_{1}}+\overrightarrow{e_{2}}\)\(\overrightarrow{e_{1}}-\overrightarrow{e_{2}}\)
D.\(\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}\)\(-\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}}\)
【解析】\(\overrightarrow{e_{1}}\)\(\overrightarrow{e_{2}}\)是平面內一組不共線的向量,作為基底的向量,前提為不共線向量,所以對於選項\(ABC\)都為不共線向量,選項\(D\) \(\overrightarrow{e_{1}}-2 \overrightarrow{e_{2}}\)\(-\overrightarrow{e_{1}}+2 \overrightarrow{e_{2}}\)為共線向量.
故選 \(D\)
 

【典題2】已知方程\(\vec{a} x^{2}+\vec{b} x+\vec{c}=0\),其中\(\vec{a}\)\(\vec{b}\)\(\vec{c}\)是非零向量,且\(\vec{a}\)\(\vec{b}\)不共線,則該方程(  )
A.至多有一個解 \(\qquad \qquad \qquad \qquad\) B.至少有一個解
C.至多有兩個解 \(\qquad \qquad \qquad \qquad\) D.可能有無數多個解
【解析】\(∵\vec{a} x^{2}+\vec{b} x+\vec{c}=0\)\(\therefore \vec{c}=-\vec{a} x^{2}-\vec{b} x\)
\(∵\vec{a}\)\(\vec{b}\)不共線,
故存在唯一一對實數\(λ ,μ\)使\(\vec{c}=\lambda \vec{a}+\mu \vec{b}\)
\(λ\)滿足\(λ=-μ^2\),則方程有一個解;
\(λ\)不滿足\(λ=-μ^2\),則方程無解;所以至多一個解,
故選 \(A\)
【點撥】本題考核對平面向量的基本定理中的”存在性、唯一性”的理解.
 

【題型二】平面向量的基本定理的運用

【典題1】已知在\(△ABC\)中,\(M ,N\)分別是邊\(AB\),\(AC\)上的點,且\(\overrightarrow{A M}=2 \overrightarrow{M B}\)\(\overrightarrow{A N}=3 \overrightarrow{N C}\)\(BN\)\(CM\)相交於點\(P\) , 記\(\vec{a}=\overrightarrow{A B}\)\(\vec{b}=\overrightarrow{A C}\),用\(\vec{a}, \quad \vec{b}\)表示\(\overrightarrow{A P}\)的結果是(  )
A.\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{2}{3} \vec{b}\)
B.\(\overrightarrow{A P}=\dfrac{1}{2} \vec{a}+\dfrac{1}{3} \vec{b}\)
C.\(\overrightarrow{A P}=\dfrac{2}{5} \vec{a}+\dfrac{1}{3} \vec{b}\)
D.\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\)
image.png

【解析】 由題意,可知\(\overrightarrow{A M}=\dfrac{2}{3} \overrightarrow{A B}\)\(\overrightarrow{A N}=\dfrac{3}{4} \overrightarrow{A C}\)
\(\overrightarrow{B P}=\lambda \overrightarrow{B N}\)
則有\(\overrightarrow{A P}=\overrightarrow{A B}+\overrightarrow{B P}=\overrightarrow{A B}+\lambda \overrightarrow{B N}\)\(=\overrightarrow{A B}+\lambda(\overrightarrow{A N}-\overrightarrow{A B})\)
\(=\overrightarrow{A B}+\lambda \overrightarrow{A N}-\lambda \overrightarrow{A B}\)\(=(1-\lambda) \overrightarrow{A B}+\lambda \cdot \dfrac{3}{4} \overrightarrow{A C}\)\(=(1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}\)
又設\(\overrightarrow{C P}=\mu \overrightarrow{C M}\)
則有\(\overrightarrow{A P}=\overrightarrow{A C}+\overrightarrow{C P}=\overrightarrow{A C}+\mu \overrightarrow{C M}\)\(=\overrightarrow{A C}+\mu(\overrightarrow{A M}-\overrightarrow{A C})\)\(=\overrightarrow{A C}+\mu \overrightarrow{A M}-\mu \overrightarrow{A C}\)
\(=(1-\mu) \overrightarrow{A C}+\mu \cdot \dfrac{2}{3} \overrightarrow{A B}\)\(=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\)
通過比較①②,可得關於\(λ ,μ\)的二元一次方程組:\(\left\{\begin{array}{l} 1-\lambda=\dfrac{2}{3} \mu \\ \dfrac{3}{4} \lambda=1-\mu \end{array}\right.\)
解此二元一次方程組,得\(\left\{\begin{array}{l} \lambda=\dfrac{2}{3} \\ \mu=\dfrac{1}{2} \end{array}\right.\)
將結果帶入①式,可得\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\),故選:\(D\)
【點撥】
① 這里給到的方法是以不共線向量\(\vec{a}, \vec{b}\)為基底,通過兩個方式得到向量\(\overrightarrow{A P}\)的表達式,即\((1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\),再由平面向量的基本定理求出\(\overrightarrow{A P}\).
② 本題方法很多也可以用平行四邊形法則求解.
 

【典題2】 如圖,兩塊斜邊長相等的直角三角板拼在一起.若\(\overrightarrow{A D}=x \overrightarrow{A B}+y \overrightarrow{A C}\),求\(x ,y\).

【解析】\(AB\)所在直線為\(x\)軸,以\(A\)為原點建立平面直角坐標系(如圖).

\(AB=2\),則\(\overrightarrow{A B}=(2,0)\)\(\overrightarrow{A C}=(0,2)\)
\(D\)\(DF⊥AB\)\(AB\)的延長線為\(F\),由已知得\(D E=B C=2 \sqrt{2}\),故\(DB=\sqrt{6}\)
\(D F=B F=\sqrt{3}\),則\(\overrightarrow{A D}=(2+\sqrt{3}, \sqrt{3})\)
\(\because \overrightarrow{A D}=x \overrightarrow{A B}+y \overrightarrow{A C}\)\(\therefore(2+\sqrt{3}, \sqrt{3})=(2 x, 2 y)\)
即有\(x=1+\dfrac{\sqrt{3}}{2}\)\(y=\dfrac{\sqrt{3}}{2}\)
【點撥】
① 本題也可以用平行四邊形法則求解;
② 這里講解的方法是建系法,常見步驟如下
(1) 找到合適的方式(一般是利用題中垂直關系等)建系;
(2) 通過一些幾何的知識點求出線段的長度,進而得到關鍵點的坐標;
(3) 關鍵向量用坐標形式表示,比如本題中的\(\overrightarrow{A B}=(2,0)\)\(\overrightarrow{A D}=(2+\sqrt{3}, \sqrt{3})\)等;
(4) 得到方程組求解(其實就是利用平面向量的基本定理的唯一性).
③ 當根據題意發現容易建系(比如有明顯的垂直關系等),可考慮建系法,它充分體現了“解析幾何的優勢”.
 

【典題3】 在直角梯形\(ABCD\)中,\(AB⊥AD\)\(AD∥BC\)\(AB=BC=2AD=2\)\(E\)\(F\)分別為\(BC\)\(CD\)的中點,以\(A\)為圓心,\(AD\)為半徑的半圓分別交\(BA\)及其延長線於點\(M\)\(N\),點\(P\)\(\widehat{M D N}\)上運動(如圖).若\(\overrightarrow{A P}=\lambda \overrightarrow{A E}+\mu \overrightarrow{B F}\),其中\(λ ,μ∈R\),則\(2λ-5μ\)的取值范圍是\(\underline{\quad \quad}\).

【解析】 建立如圖所示的坐標系,

\(A(0 ,0)\)\(B(2 ,0)\)\(D(0 ,1)\)\(C(2 ,2)\)\(E(2 ,1)\)\(F\left(1, \dfrac{3}{2}\right)\)
\(P(\cos α ,\sin α)\) \((0≤α≤π)\)
\({\color{Red}{(因為P在單位圓上,α為∠PAM)}}\)
\(\overrightarrow{A P}=\lambda \overrightarrow{A E}+\mu \overrightarrow{B F}\)\((\cos \alpha, \sin \alpha)\)\(=\lambda(2,1)+\mu\left(-1, \dfrac{3}{2}\right)=\left(2 \lambda-\mu, \lambda+\dfrac{3}{2} \mu\right)\)
\(\Rightarrow \cos \alpha=2 \lambda-\mu, \sin \alpha=\lambda+\dfrac{3}{2} \mu\)
\(\Rightarrow \lambda=\dfrac{3}{8} \cos \alpha+\dfrac{1}{4} \sin \alpha, \quad \mu=\dfrac{1}{2} \sin \alpha-\dfrac{1}{4} \cos \alpha\)
\(\therefore 2 \lambda-5 \mu\)\(=2\left(\dfrac{3}{8} \cos \alpha+\dfrac{1}{4} \sin \alpha\right)-5\left(\dfrac{1}{2} \sin \alpha-\dfrac{1}{4} \cos \alpha\right)\)
\(=-2(\sin \alpha-\cos \alpha)=-2 \sqrt{2} \sin \left(\alpha-\dfrac{\pi}{4}\right)\)
\(\because \alpha-\dfrac{\pi}{4} \in\left[-\dfrac{\pi}{4}, \dfrac{3 \pi}{4}\right]\) , \(\therefore-2 \sqrt{2} \sin \left(\alpha-\dfrac{\pi}{4}\right) \in[-2 \sqrt{2}, 2]\)
\(2λ-5μ\)的取值范圍是\([-2 \sqrt{2}, 2]\)
【點撥】 利用建系法求解,點\(P\)在單位圓上,巧妙的設為\(P(\cosα ,\sinα)\),引入參數\(α\),此處要注意\(0≤α≤π\),則\(2λ-5μ\)\(α\)的函數,求最值不難了.
 

鞏固練習

1(★) 下列各組向量中,可以作為基底的是(  )
A.\(\overrightarrow{e_{1}}=(0,0), \overrightarrow{e_{2}}=(1,2)\)
B.\(\overrightarrow{e_{1}}=(-1,2), \overrightarrow{e_{2}}=(5,7)\)
C.\(\overrightarrow{e_{1}}=(3,5), \overrightarrow{e_{2}}=(6,10)\)
D.\(\overrightarrow{e_{1}}=(2,-3), \overrightarrow{e_{2}}=(-6,9)\)

 

2 (★★) 如圖,四邊形\(ABCD\)是正方形,延長\(CD\)\(E\),使得\(DE=CD\).若動點\(P\)從點A出發,沿正方形的邊按逆時針方向運動一周回到\(A\)點,其中\(\overrightarrow{A P}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A E}\),下列判斷正確的是(  )
image.png
A.滿足\(λ+μ=2\)的點\(P\)必為\(BC\)的中點
B.滿足\(λ+μ=1\)的點\(P\)有且只有一個
C.滿足\(λ+μ=a(a>0)\)的點\(P\)最多有\(3\)
D.\(λ+μ\)的最大值為\(3\)
 

3 (★★)如圖,在\(△ABC\)中,設\(\overrightarrow{A B}=\vec{a}\)\(\overrightarrow{A C}=\vec{b}\)\(AP\)的中點為\(Q\)\(BQ\)的中點為\(R\)\(CR\)的中點為\(P\),若\(\overrightarrow{A P}=m \vec{a}+n \vec{b}\),則\(m、n\)對應的值為\(\underline{\quad \quad}\)
image.png
 

4 (★★)如圖,已知\(|\overrightarrow{O A}|=|\overrightarrow{O B}|=1\)\(|\overrightarrow{O C}|=\sqrt{3}\)\(\overrightarrow{O C} \perp \overrightarrow{O B}\)\(\langle\overrightarrow{O A}, \overrightarrow{O C}\rangle=30^{\circ}\),若\(\overrightarrow{O C}=x \overrightarrow{O A}+y \overrightarrow{O B}\),則\(x+y=\)\(\underline{\quad \quad}\)
image.png
 

5(★★★) 在平面向量中有如下定理:設點\(O\)\(P\)\(Q\)\(R\)為同一平面內的點,則\(P\)\(Q\)\(R\)三點共線的充要條件是:存在實數\(t\),使\(\overrightarrow{O P}=(1-t) \overrightarrow{O Q}+t \overrightarrow{O R}\).試利用該定理解答下列問題:如圖,在\(△ABC\)中,點\(E\)\(AB\)邊的中點,點\(F\)\(AC\)邊上,且\(CF=2FA\)\(BF\)\(CE\)於點\(M\),設\(\overrightarrow{A M}=x \overrightarrow{A E}+y \overrightarrow{A F}\),則\(x+y=\)\(\underline{\quad \quad}\)
image.png
 

6(★★★) 在梯形\(ABCD\)中,\(\overrightarrow{A B}=2 \overrightarrow{D C}\)\(\overrightarrow{B E}=\dfrac{1}{3} \overrightarrow{B C}\)\(P\)為線段\(DE\)上的動點(包括端點),且\(\overrightarrow{A P}=\lambda \overrightarrow{A B}+\mu \overrightarrow{B C}\)\((\lambda, \mu \in \boldsymbol{R})\),則\(λ^2+μ\)的最小值為\(\underline{\quad \quad}\)
 

7(★★★)如圖,正方形\(ABCD\)的邊長為\(2\)\(E\) ,\(F\)分別為\(BC\)\(CD\)的動點,且\(|BE|=2|CF|\),設\(\overrightarrow{A C}=x \overrightarrow{A E}+y \overrightarrow{A F}\)\((x, y \in R)\),則\(x+y\)的最大值是\(\underline{\quad \quad}\)
image.png
 

8(★★★)如圖,在平面四邊形\(ABCD\)中,\(∠CBA=∠CAD=90°\)\(∠ACD=30°\)\(AB=BC\),點\(E\)在線段\(BC\)上,且\(\overrightarrow{B C}=3 \overrightarrow{B E}\),若\(\overrightarrow{A C}=\lambda \overrightarrow{A D}+\mu \overrightarrow{A E}\)\((\lambda, \mu \in \boldsymbol{R})\),則\(\dfrac{\mu}{\lambda}\)的值為\(\underline{\quad \quad}\)
image.png
 

參考答案

  1. \(B\)
  2. \(D\)
  3. \(m=\dfrac{2}{7}, n=\dfrac{4}{7}\)
  4. \(2\)
  5. \(\dfrac{7}{5}\)
  6. \(\dfrac{11}{9}\)
  7. \(\dfrac{\sqrt{2}+1}{2}\)
  8. \(\sqrt{3}\)

【題型三】 向量位置關系

【典題1】 已知平面內三向量\(\vec{a}=(2,1)\)\(\vec{b}=(-1,3)\)\(\vec{c}=(-2,2)\)
(1)求滿足\(\vec{a}=m \vec{b}+n \vec{c}\)的實數\(m ,n\)
(2)若\((2 \vec{a}+k \vec{c} \|(\vec{b}+\vec{c})\),求實數\(k\)的值;
(3)若\((2 \vec{a}+k \vec{c}) \perp(\vec{b}+\vec{c})\),求實數\(k\)的值.
【解析】 (1) \(m \vec{b}+n \vec{c}=m(-1,3)+n(-2,2)\)\(=(-m-2 n, 3 m+2 n)=(2,1)\)
\(\therefore\left\{\begin{array}{l} -m-2 n=2 \\ 3 m+2 n=1 \end{array}\right.\),解得\(m=\dfrac{3}{2}\)\(n=-\dfrac{7}{4}\)
(2) \(2 \vec{a}+k \vec{c}=2(2,1)+k(-2,2)=(4-2 k, 2+2 k)\)
\(\vec{b}+\vec{c}=(-3,5)\)
\(\because(2 \vec{a}+k \vec{c}) / /(\vec{b}+\vec{c})\)\(∴5(4-2k)-(-3)(2+2k)=0\),解得\(k=\dfrac{13}{2}\)
(3)\(\because(2 \vec{a}+k \vec{c}) \perp(\vec{b}+\vec{c})\),由(2)可得\(-3(4-2k)+5(2+2k)=0\)
\(\therefore k=\dfrac{1}{8}\)

【典題2】 設向量\(\overrightarrow{O A}=(1,-2)\)\(\overrightarrow{O B}=(a,-1)\)\(\overrightarrow{O C}=(-b, 0)\),其中 \(O\)為坐標原點,\(b>0\),若 \(A ,B ,C\)三點共線,則\(\dfrac{1}{a}+\dfrac{2}{b}\)的最小值為\(\underline{\quad \quad}\).
【解析】\(\overrightarrow{A B}=(a-1,1)\)\(\overrightarrow{A C}=(-b-1,2)\)
\(∵A ,B ,C\) 三點共線,\(∴2(a-1)-(-b-1)=0\),化為\(2a+b=1\)
\(\dfrac{1}{a}+\dfrac{2}{b}=(2 a+b)\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)\(=4+\dfrac{b}{a}+\dfrac{4 a}{b} \geq 4+2 \sqrt{\dfrac{b}{a} \cdot \dfrac{4 a}{b}}=8\)
當且僅當\(b=2 a=\dfrac{1}{2}\)時取等號.
【點撥】\(A ,B ,C\)三點共線,即\(\overrightarrow{A B} / / \overrightarrow{A C}\).

【典題3】 已知向量\(\vec{a}=(2,1)\)\(\vec{b}=(-1, m)\),若\(\vec{a}\)\(\vec{b}\)夾角為鈍角,則\(m\)的取值范圍是\(\underline{\quad \quad}\)
【解析】 向量\(\vec{a}=(2,1)\)\(\vec{b}=(-1, m)\)
\(\vec{a}\)\(\vec{b}\)夾角為鈍角,則\(\left\{\begin{array}{l} \vec{a} \cdot \vec{b}<0 \\ \vec{a} 、 \vec{b} \text { 不共線 } \end{array}\right.\)
\({\color{Red}{(注意排除\vec{a},\vec{b}共線的情況)}}\)
\(\left\{\begin{array}{l} 2 \times(-1)+1 \cdot m<0 \\ -\dfrac{1}{2} \neq m \end{array}\right.\),解得\(m<2\)\(m \neq-\dfrac{1}{2}\)
\(∴m\)的取值范圍是\(\left(-\infty,-\dfrac{1}{2}\right) \cup\left(-\dfrac{1}{2}, 2\right)\)
【點撥】由數量積\(\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta\)可知
\(\vec{a} \perp \vec{b}⇒ \vec{a} \cdot \vec{b}=0\)\(\vec{a}\)\(\vec{b}\)夾角為鈍角\(⇒\left\{\begin{array}{l} \vec{a} \cdot \vec{b}<0 \\ \vec{a} 、 \vec{b} \text { 不共線 } \end{array}\right.\)\(\vec{a}\)\(\vec{b}\)夾角為銳角\(\Rightarrow\left\{\begin{array}{l} \vec{a} \cdot \vec{b}>0 \\ \vec{a}, \vec{b} \text { 不共線 } \end{array}\right.\).

鞏固練習

1(★★) 已知兩個向量\(\vec{a}=(\cos \theta, \sin \theta)\)\(\vec{b}=(\sqrt{3},-1)\),則\(|2 \vec{a}-\vec{b}|\)的最大值是(  )
A.\(2\) B.\(2 \sqrt{2}\) C.\(4\) D.\(4 \sqrt{2}\)

2(★★) 已知點\(A(2 ,3)\)\(B(-2 ,6)\)\(C(6 ,6)\)\(D(10 ,3)\),則以\(A、B、C、D\)為頂點的四邊形是(  )
A.梯形 B.鄰邊不等的平行四邊形
C.菱形 D.兩組對邊均不平行的四邊形

3(★★) 已知\(P_1 (2 ,-1)\)\(P_2 (0 ,5)\)且點\(P\)\(P_1 P_2\)的延長線上,\(\left|\overrightarrow{P_{1} P}\right|=2\left|\overrightarrow{P P_{2}}\right|\),則點\(P\)的坐標為  .

4(★★) 已知\(\vec{a}=(1,2+\sin x)\)\(\vec{b}=(2, \cos x)\)\(\vec{c}=(-1,2)\)\((\vec{a}-\vec{c}) \| \vec{b}\),則銳角\(x\)等於\(\underline{\quad \quad}\)

5(★★) 已知向量\(\vec{a}=(1,0)\)\(\vec{b}=(0,1)\),若\((k \vec{a}+\vec{b}) \perp(3 \vec{a}-\vec{b})\),則實數\(k=\)\(\underline{\quad \quad}\)

6(★★) 在平面四邊形\(ABCD\)中,\(\overrightarrow{A C}=(1,3)\)\(\overrightarrow{B D}=(-9,3)\),則四邊形\(ABCD\)的面積為\(\underline{\quad \quad}\)

答案

  1. \(C\)
  2. \(B\)
  3. \((-2,11)\)
  4. \(45°\)
  5. \(\dfrac{1}{3}\)
  6. \(15\)

【題型四】利用建系求解數量積

【典題1】如圖,在菱形\(ABCD\)中,\(AB=1\),\(∠BAD=60°\),且\(E\)為對角線\(AC\)上一點.
(1)求 \(\overrightarrow{A B} \cdot \overrightarrow{A D}\)
(2)若\(\overrightarrow{A E}=2 \overrightarrow{E C}\),求\(\overrightarrow{A E} \cdot \overrightarrow{A B}\)
(3)連結\(BE\)並延長,交\(CD\)於點\(F\),連結\(AF\),設\(\overrightarrow{C E}=\lambda \overrightarrow{E A}(0 \leq \lambda \leq 1)\).當\(λ\)為何值時,可使\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)最小,並求出\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)的最小值.
image.png
【解析】(1)\(\overrightarrow{A B} \cdot \overrightarrow{A D}=A B \cdot A D \cdot \cos \angle B A D=1 \times 1 \times \cos 60^{\circ}=\dfrac{1}{2}\)
(2)\(\because \overrightarrow{A E}=2 \overrightarrow{E C}\)\(\therefore \overrightarrow{A E}=\dfrac{2}{3} \overrightarrow{A C}=\dfrac{2}{3}(\overrightarrow{A B}+\overrightarrow{A D})\)
\(\therefore \overrightarrow{A E} \cdot \overrightarrow{A B}=\dfrac{2}{3} \overrightarrow{A C} \cdot \overrightarrow{A B}\)\(=\dfrac{2}{3}(\overrightarrow{A B}+\overrightarrow{A D}) \cdot \overrightarrow{A B}\)\(=\dfrac{2}{3} \overrightarrow{A B}^{2}+\dfrac{2}{3} \overrightarrow{A D} \cdot \overrightarrow{A B}=\dfrac{2}{3}+\dfrac{2}{3} \times \dfrac{1}{2}=1\)
(3)以\(AB\)所在直線為\(x\)軸,以\(A\)為原點建立平面直角坐標系,
image.png
\(A(0 ,0)\),\(B(1 ,0)\),\(\left(\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\)
\({\color{Red}{(點A、B的坐標已求,故要出點F坐標是關鍵)}}\)
\(\because \overrightarrow{C E}=\lambda \overrightarrow{E A}\)\(\therefore C E=\lambda E A\)
由圖易得\(\triangle A B E \backsim \triangle C F E\),可得\(\dfrac{C F}{A B}=\dfrac{C E}{A E}=\lambda\)\(∴CF=λAB=λ\)
\(∴DF=1-λ\),則\(F\left(\dfrac{3}{2}-\lambda, \dfrac{\sqrt{3}}{2}\right)\)
\(\therefore \overrightarrow{A F}=\left(\dfrac{3}{2}-\lambda, \dfrac{\sqrt{3}}{2}\right)\)\(\overrightarrow{B F}=\left(\dfrac{1}{2}-\lambda, \dfrac{\sqrt{3}}{2}\right)\)
\(\therefore \overrightarrow{A F} \cdot \overrightarrow{B F}=\left(\dfrac{3}{2}-\lambda\right) \times\left(\dfrac{1}{2}-\lambda\right)+\dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2}\)\(=\lambda^{2}-2 \lambda+\dfrac{3}{2}=(\lambda-1)^{2}+\dfrac{1}{2}\)
\(∴\)\(λ=1\)時,\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)最小,最小值是\(\dfrac{1}{2}\)
【點撥】求數量積方法多樣
① 直接利用數量積的定義\(\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta\),比如第一問求\(\overrightarrow{A D} \cdot \overrightarrow{A B}\)
② 把數量積中的向量轉化為”信息量大”的向量,進而求解,比如第二問求\(\overrightarrow{A E} \cdot \overrightarrow{A B}\),轉化為向量\(\overrightarrow{A D}\)\(\overrightarrow{A B}\)的關系;
③ 建系法,利用幾何的知識點求出關鍵點坐標,從而數量積問題轉化為代數問題,比如第三問求\(\overrightarrow{A F} \cdot \overrightarrow{B F}\),因為易得\(A、B\)的坐標,只要求出點F的坐標,就可以把數量積\(\overrightarrow{A F} \cdot \overrightarrow{B F}\)轉化為含λ的式子,最值就易求了!

鞏固練習

1(★) 已知向量\(\vec{a}=(\sqrt{3}, 1)\)\(\vec{b}=(m-1,3)\),若向量\(\vec{a}, \vec{b}\)的夾角為銳角,則實數\(m\)的取值范圍為\(\underline{\quad \quad}\)

2(★★) 如圖所示,在梯形\(ABCD\)中,\(\angle A=\dfrac{\pi}{2}\)\(A B=\sqrt{2}\)\(BC=2\)\(A D=\dfrac{3}{2}\),點\(E\)\(AB\)的中點,則\(\overrightarrow{C E} \cdot \overrightarrow{B D}=\)\(\underline{\quad \quad}\)
image.png

3(★★) 在平直角坐標系\(xOy\)中,\(A(1 ,0)\)\(B(0 ,2)\),點\(P\)在線段\(AB\)上運動,則\(\overrightarrow{O P} \cdot \overrightarrow{A P}\)的取值范圍為\(\underline{\quad \quad}\)

4(★★)如圖,菱形\(ABCD\)的邊長為\(\sqrt{5}\),對角線\(AC=4\),邊\(DC\)上點\(P\)\(CB\)的延長線上點\(Q\)滿足\(D P=B Q=\dfrac{\sqrt{5}}{3}\),則向量\(\overrightarrow{P A} \cdot \overrightarrow{P Q}\)的值是\(\underline{\quad \quad}\)
image.png

5(★★★) \(P\)是邊長為\(2\)的正方形\(ABCD\)邊界或內部一點,且\(\overrightarrow{P B}+\overrightarrow{P C}=\overrightarrow{P M}\),則\(\overrightarrow{A P} \cdot \overrightarrow{A M}\)的最大值是\(\underline{\quad \quad}\)

6(★★★) 如圖,圓\(O\)是邊長為\(2\)的正方形\(ABCD\)的內切圓,\(△PQR\)是圓\(O\)的內接正三角形,若\(△PQR\)繞着圓心\(O\)旋轉,則\(\overrightarrow{A Q} \cdot \overrightarrow{O R}\)的最大值是\(\underline{\quad \quad}\)
image.png

答案

  1. \((1-\sqrt{3}, 1+3 \sqrt{3}) \cup(1+3 \sqrt{3},+\infty)\)
  2. \(-2\)
  3. \(\left[-\dfrac{1}{20}, 4\right]\)
  4. \(\dfrac{44}{9}\)
  5. \(5\)
  6. \(-\dfrac{1}{2}+\sqrt{2}\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM