已知 f: G → G' 是一個同態映射,e' 是 G' 的單位元,Ker f = {a ∈ G | f(a) = e'}. 則 Ker f 是 G 的正規子群.
證明:由同態映射定義知
f(a) = f(e·a) = f(e)·f(a),f(a) = f(a·e) = f(a)·f(e)
即有
f(a) = f(e)·f(a) = f(a)·f(e),即 f(e) = e',e ∈ Ker f
對任意的 h1 ∈ Ker f,h2 ∈ Ker f,f(h1·h2) = f(h1)·f(h2) = e'·e' = e',於是 h1·h2 ∈ Ker f
對任意的 a ∈ G,有
e' = f(e) = f(a·a-1) = f(a)·f(a-1)
e' = f(e) = f(a-1·a) = f(a-1)·f(a)
即有 f(a-1) = (f(a))-1
對任意的 h ∈ Ker f,則有 f(h-1) = (f(h))-1 = (e')-1 = e',於是 h-1 ∈ Ker f
綜上,Ker f 是 G 的子群.
以下進一步證明 Ker f 是 G 的正規子群. 記 Ker f = H.
考慮任意的 a ∈ G,h ∈ H,a·h ∈ aH,h·a ∈ Ha
由 f(a-1·h·a) = f(a-1·h)·f(a) = f(a-1)·f(h)·f(a) = (f(a))-1·e'·f(a) = e',有
a-1·h·a ∈ H
於是 a·(a-1·h·a) ∈ aH,即 a·(a-1·h·a) = a·(a-1·(h·a)) = a·a-1·(h·a) = h·a ∈ aH
同樣,由 f(a·h·a-1) = f(a·h)·f(a-1) = f(a)·f(h)·f(a-1) = f(a)·e'·(f(a))-1 = e',有
a·h·a-1 ∈ H
於是 (a·h·a-1)·a ∈ Ha,即 (a·h·a-1)·a = (a·h)·(a-1·a) = a·h ∈ Ha
綜上即有 aH = Ha,所以 H = Ker f 是 G 的正規子群.