#!/usr/bin/env python # -*- coding:utf-8 -*- # <editable> def execute(): # <editable> ''' 載入模塊 ''' from scipy.stats import ttest_ind, norm import pandas as pd from sqlalchemy import create_engine ''' 連接數據庫 ''' engine = create_engine('mysql+pymysql://root:123123qwe@127.0.0.1:3306/analysis') ''' 選擇目標數據 ''' # 生成數據 # params = { # "col1": "", # "col2": "", # } # inputs = {"table": '純隨機性檢驗'} # data_sql = 'select ' + params['col1'] + ',' + params['col2'] + ' from ' + inputs['table'] # data_in = pd.read_sql_query(data_sql, engine) # print(data_in) col1 = norm.rvs(loc=5, scale=10, size=500) col2 = norm.rvs(loc=5, scale=10, size=500) ''' 雙樣本t檢驗 ''' # col1 = data_in[params['col1']] # col2 = data_in[params['col2']] # p = ttest_ind(col1, col2)[1] p = ttest_ind(col1, col2)[1] ''' ttest_ind(equal_var=False) equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [R263]. If False, perform Welch’s t-test, which does not assume equal population variance [R264]. ''' data_out = '' if (p < 0.05): data_out += '雙樣本t檢驗結果' data_out += '檢驗結果' data_out += "p值為:" + str(p) + ",認為兩者總體均值不同" else: data_out += '雙樣本t檢驗結果' data_out += '檢驗結果' data_out += "p值為:" + str(p) + ",無充分證據證明兩者總體均值不同" ''' 生成報告 ''' print(data_out) # </editable> if __name__ == '__main__': execute()