Human-like Controllable Image Captioning with Verb-specific Semantic Roles(具有動詞語義角色的類人可控圖像字幕生成)


 前人的缺陷:

CIC works mainly focus on (1)subjective control signals,(2)objective control signals  or (1) Content-controlled (2) Structure controlled

almost all existing objective control signals have overlooked two indispensable characteristics of an ideal control signal:

  1) Event-compatible:all visual contents referred to in a single sentence should be compatible with the describe activity.

  2) Sample-suitable: the control signals should be suitable for a specific image sample.

 

論文的創新點:

propose a new event-oriented objective control signal, Verb-specific Semantic Roles (VSR), to meet both event-compatible and sample-suitable requirements simultaneously。

VSR consists of a verb and some user-interested semantic roles。

Grounded Semantic Role Labeling: visual features of all grounded proposal sets。

Semantic Structure Plannerhierarchical semantic structure learning model, which aims to learn a reasonable sequence of sub-roles S。

Verb-specific Semantic RolesGrounded Semantic Role Labeling  υ  Semantic Structure Planner

 

 

 

 

 



 

 step:we first use GSRL and SSP to obtain semantic structures and grounded regions features: (Sa; Ra) and (Sb; Rb).

Then,as shown in Figure above, we merge them by two steps。

  (a) find the sub-roles in both Sa and Sb which refer to the same visual regions 

  (b) insert all other sub-roles between the nearest two selected sub-roles


模型架構:

Faster R-CNN(ResNet-101) + Controllable LSTM + Controllable UpDn + SCT

原文: https://arxiv.org/abs/2103.12204

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM