Human-like Controllable Image Captioning with Verb-specific Semantic Roles(具有动词语义角色的类人可控图像字幕生成)


 前人的缺陷:

CIC works mainly focus on (1)subjective control signals,(2)objective control signals  or (1) Content-controlled (2) Structure controlled

almost all existing objective control signals have overlooked two indispensable characteristics of an ideal control signal:

  1) Event-compatible:all visual contents referred to in a single sentence should be compatible with the describe activity.

  2) Sample-suitable: the control signals should be suitable for a specific image sample.

 

论文的创新点:

propose a new event-oriented objective control signal, Verb-specific Semantic Roles (VSR), to meet both event-compatible and sample-suitable requirements simultaneously。

VSR consists of a verb and some user-interested semantic roles。

Grounded Semantic Role Labeling: visual features of all grounded proposal sets。

Semantic Structure Plannerhierarchical semantic structure learning model, which aims to learn a reasonable sequence of sub-roles S。

Verb-specific Semantic RolesGrounded Semantic Role Labeling  υ  Semantic Structure Planner

 

 

 

 

 



 

 step:we first use GSRL and SSP to obtain semantic structures and grounded regions features: (Sa; Ra) and (Sb; Rb).

Then,as shown in Figure above, we merge them by two steps。

  (a) find the sub-roles in both Sa and Sb which refer to the same visual regions 

  (b) insert all other sub-roles between the nearest two selected sub-roles


模型架构:

Faster R-CNN(ResNet-101) + Controllable LSTM + Controllable UpDn + SCT

原文: https://arxiv.org/abs/2103.12204

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM