實驗01 波士頓房價預測
實現代碼:
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error from sklearn.externals import joblib from sklearn.metrics import r2_score from sklearn.neural_network import MLPRegressor import pandas as pd import numpy as np lb = load_boston() # train_test_split(train_data,train_target,test_size=0.3,random_state=5) #train_data:待划分樣本數據 #train_target:待划分樣本數據的結果(標簽) #test_size:測試數據占樣本數據的比例,若整數則樣本數量 #random_state:設置隨機數種子,保證每次都是同一個隨機數。若為0或不填,則每次得到數據都不一樣 #train_test_split()函數是用來隨機划分樣本數據為訓練集和測試集的,當然也可以人為的切片划分 x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.2) # 為數據增加一個維度,相當於把[1, 5, 10] 變成 [[1, 5, 10],] y_train = y_train.reshape(-1, 1) y_test = y_test.reshape(-1, 1) # 進行標准化 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) std_y = StandardScaler() y_train = std_y.fit_transform(y_train) y_test = std_y.transform(y_test) # 正規方程預測 #最小二乘法線性回歸 lr = LinearRegression() #fit_transform方法是fit和transform的結合,fit_transform(X_train) 意思是找出X_train的均值和標准差,並應用在X_train上 lr.fit(x_train, y_train) print("r2 score of Linear regression is",r2_score(y_test,lr.predict(x_test))) #嶺回歸 from sklearn.linear_model import RidgeCV #嶺回歸模型 cv = RidgeCV(alphas=np.logspace(-3, 2, 100)) cv.fit (x_train , y_train) print("r2 score of Linear regression is",r2_score(y_test,cv.predict(x_test))) #梯度下降 用於判斷使用凸loss函數(convex loss function)的分類器 sgd = SGDRegressor() #一個數組X(其size為[n_samples, n_features]):保存着訓練樣本;一個數組Y:保存着訓練樣本的target值(class label): sgd.fit(x_train, y_train) print("r2 score of Linear regression is",r2_score(y_test,sgd.predict(x_test))) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense #基准NN #使用標准化后的數據 seq = Sequential() #構建神經網絡模型 #input_dim來隱含的指定輸入數據shape seq.add(Dense(64, activation='relu',input_dim=lb.data.shape[1])) seq.add(Dense(64, activation='relu')) seq.add(Dense(1, activation='relu')) seq.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) seq.fit(x_train, y_train, epochs=300, batch_size = 16, shuffle = False) score = seq.evaluate(x_test, y_test,batch_size=16) #loss value & metrics values print("score:",score) print('r2 score:',r2_score(y_test, seq.predict(x_test)))
運行結果:
正規方程預測:
嶺回歸結果:
梯隊下降:
最終結果:
遇到的問題及解決方法:

原因:
tensorflow 版本過高,該函數已經整合到tensorflow當中。
解決方法:
由
from keras.models import Sequential from keras.layers import Dense
改為:
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense